1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020 Spreadtrum Communications Inc.
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#define SPRD_THM_CTL 0x0
#define SPRD_THM_INT_EN 0x4
#define SPRD_THM_INT_STS 0x8
#define SPRD_THM_INT_RAW_STS 0xc
#define SPRD_THM_DET_PERIOD 0x10
#define SPRD_THM_INT_CLR 0x14
#define SPRD_THM_INT_CLR_ST 0x18
#define SPRD_THM_MON_PERIOD 0x4c
#define SPRD_THM_MON_CTL 0x50
#define SPRD_THM_INTERNAL_STS1 0x54
#define SPRD_THM_RAW_READ_MSK 0x3ff
#define SPRD_THM_OFFSET(id) ((id) * 0x4)
#define SPRD_THM_TEMP(id) (SPRD_THM_OFFSET(id) + 0x5c)
#define SPRD_THM_THRES(id) (SPRD_THM_OFFSET(id) + 0x2c)
#define SPRD_THM_SEN(id) BIT((id) + 2)
#define SPRD_THM_SEN_OVERHEAT_EN(id) BIT((id) + 8)
#define SPRD_THM_SEN_OVERHEAT_ALARM_EN(id) BIT((id) + 0)
/* bits definitions for register THM_CTL */
#define SPRD_THM_SET_RDY_ST BIT(13)
#define SPRD_THM_SET_RDY BIT(12)
#define SPRD_THM_MON_EN BIT(1)
#define SPRD_THM_EN BIT(0)
/* bits definitions for register THM_INT_CTL */
#define SPRD_THM_BIT_INT_EN BIT(26)
#define SPRD_THM_OVERHEAT_EN BIT(25)
#define SPRD_THM_OTP_TRIP_SHIFT 10
/* bits definitions for register SPRD_THM_INTERNAL_STS1 */
#define SPRD_THM_TEMPER_RDY BIT(0)
#define SPRD_THM_DET_PERIOD_DATA 0x800
#define SPRD_THM_DET_PERIOD_MASK GENMASK(19, 0)
#define SPRD_THM_MON_MODE 0x7
#define SPRD_THM_MON_MODE_MASK GENMASK(3, 0)
#define SPRD_THM_MON_PERIOD_DATA 0x10
#define SPRD_THM_MON_PERIOD_MASK GENMASK(15, 0)
#define SPRD_THM_THRES_MASK GENMASK(19, 0)
#define SPRD_THM_INT_CLR_MASK GENMASK(24, 0)
/* thermal sensor calibration parameters */
#define SPRD_THM_TEMP_LOW -40000
#define SPRD_THM_TEMP_HIGH 120000
#define SPRD_THM_OTP_TEMP 120000
#define SPRD_THM_HOT_TEMP 75000
#define SPRD_THM_RAW_DATA_LOW 0
#define SPRD_THM_RAW_DATA_HIGH 1000
#define SPRD_THM_SEN_NUM 8
#define SPRD_THM_DT_OFFSET 24
#define SPRD_THM_RATION_OFFSET 17
#define SPRD_THM_RATION_SIGN 16
#define SPRD_THM_RDYST_POLLING_TIME 10
#define SPRD_THM_RDYST_TIMEOUT 700
#define SPRD_THM_TEMP_READY_POLL_TIME 10000
#define SPRD_THM_TEMP_READY_TIMEOUT 600000
#define SPRD_THM_MAX_SENSOR 8
struct sprd_thermal_sensor {
struct thermal_zone_device *tzd;
struct sprd_thermal_data *data;
struct device *dev;
int cal_slope;
int cal_offset;
int id;
};
struct sprd_thermal_data {
const struct sprd_thm_variant_data *var_data;
struct sprd_thermal_sensor *sensor[SPRD_THM_MAX_SENSOR];
struct clk *clk;
void __iomem *base;
u32 ratio_off;
int ratio_sign;
int nr_sensors;
};
/*
* The conversion between ADC and temperature is based on linear relationship,
* and use idea_k to specify the slope and ideal_b to specify the offset.
*
* Since different Spreadtrum SoCs have different ideal_k and ideal_b,
* we should save ideal_k and ideal_b in the device data structure.
*/
struct sprd_thm_variant_data {
u32 ideal_k;
u32 ideal_b;
};
static const struct sprd_thm_variant_data ums512_data = {
.ideal_k = 262,
.ideal_b = 66400,
};
static inline void sprd_thm_update_bits(void __iomem *reg, u32 mask, u32 val)
{
u32 tmp, orig;
orig = readl(reg);
tmp = orig & ~mask;
tmp |= val & mask;
writel(tmp, reg);
}
static int sprd_thm_cal_read(struct device_node *np, const char *cell_id,
u32 *val)
{
struct nvmem_cell *cell;
void *buf;
size_t len;
cell = of_nvmem_cell_get(np, cell_id);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
if (len > sizeof(u32)) {
kfree(buf);
return -EINVAL;
}
memcpy(val, buf, len);
kfree(buf);
return 0;
}
static int sprd_thm_sensor_calibration(struct device_node *np,
struct sprd_thermal_data *thm,
struct sprd_thermal_sensor *sen)
{
int ret;
/*
* According to thermal datasheet, the default calibration offset is 64,
* and the default ratio is 1000.
*/
int dt_offset = 64, ratio = 1000;
ret = sprd_thm_cal_read(np, "sen_delta_cal", &dt_offset);
if (ret)
return ret;
ratio += thm->ratio_sign * thm->ratio_off;
/*
* According to the ideal slope K and ideal offset B, combined with
* calibration value of thermal from efuse, then calibrate the real
* slope k and offset b:
* k_cal = (k * ratio) / 1000.
* b_cal = b + (dt_offset - 64) * 500.
*/
sen->cal_slope = (thm->var_data->ideal_k * ratio) / 1000;
sen->cal_offset = thm->var_data->ideal_b + (dt_offset - 128) * 250;
return 0;
}
static int sprd_thm_rawdata_to_temp(struct sprd_thermal_sensor *sen,
u32 rawdata)
{
clamp(rawdata, (u32)SPRD_THM_RAW_DATA_LOW, (u32)SPRD_THM_RAW_DATA_HIGH);
/*
* According to the thermal datasheet, the formula of converting
* adc value to the temperature value should be:
* T_final = k_cal * x - b_cal.
*/
return sen->cal_slope * rawdata - sen->cal_offset;
}
static int sprd_thm_temp_to_rawdata(int temp, struct sprd_thermal_sensor *sen)
{
u32 val;
clamp(temp, (int)SPRD_THM_TEMP_LOW, (int)SPRD_THM_TEMP_HIGH);
/*
* According to the thermal datasheet, the formula of converting
* adc value to the temperature value should be:
* T_final = k_cal * x - b_cal.
*/
val = (temp + sen->cal_offset) / sen->cal_slope;
return clamp(val, val, (u32)(SPRD_THM_RAW_DATA_HIGH - 1));
}
static int sprd_thm_read_temp(void *devdata, int *temp)
{
struct sprd_thermal_sensor *sen = devdata;
u32 data;
data = readl(sen->data->base + SPRD_THM_TEMP(sen->id)) &
SPRD_THM_RAW_READ_MSK;
*temp = sprd_thm_rawdata_to_temp(sen, data);
return 0;
}
static const struct thermal_zone_of_device_ops sprd_thm_ops = {
.get_temp = sprd_thm_read_temp,
};
static int sprd_thm_poll_ready_status(struct sprd_thermal_data *thm)
{
u32 val;
int ret;
/*
* Wait for thermal ready status before configuring thermal parameters.
*/
ret = readl_poll_timeout(thm->base + SPRD_THM_CTL, val,
!(val & SPRD_THM_SET_RDY_ST),
SPRD_THM_RDYST_POLLING_TIME,
SPRD_THM_RDYST_TIMEOUT);
if (ret)
return ret;
sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_MON_EN,
SPRD_THM_MON_EN);
sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SET_RDY,
SPRD_THM_SET_RDY);
return 0;
}
static int sprd_thm_wait_temp_ready(struct sprd_thermal_data *thm)
{
u32 val;
/* Wait for first temperature data ready before reading temperature */
return readl_poll_timeout(thm->base + SPRD_THM_INTERNAL_STS1, val,
!(val & SPRD_THM_TEMPER_RDY),
SPRD_THM_TEMP_READY_POLL_TIME,
SPRD_THM_TEMP_READY_TIMEOUT);
}
static int sprd_thm_set_ready(struct sprd_thermal_data *thm)
{
int ret;
ret = sprd_thm_poll_ready_status(thm);
if (ret)
return ret;
/*
* Clear interrupt status, enable thermal interrupt and enable thermal.
*
* The SPRD thermal controller integrates a hardware interrupt signal,
* which means if the temperature is overheat, it will generate an
* interrupt and notify the event to PMIC automatically to shutdown the
* system. So here we should enable the interrupt bits, though we have
* not registered an irq handler.
*/
writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
SPRD_THM_BIT_INT_EN, SPRD_THM_BIT_INT_EN);
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_EN, SPRD_THM_EN);
return 0;
}
static void sprd_thm_sensor_init(struct sprd_thermal_data *thm,
struct sprd_thermal_sensor *sen)
{
u32 otp_rawdata, hot_rawdata;
otp_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_OTP_TEMP, sen);
hot_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_HOT_TEMP, sen);
/* Enable the sensor' overheat temperature protection interrupt */
sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id),
SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id));
/* Set the sensor' overheat and hot threshold temperature */
sprd_thm_update_bits(thm->base + SPRD_THM_THRES(sen->id),
SPRD_THM_THRES_MASK,
(otp_rawdata << SPRD_THM_OTP_TRIP_SHIFT) |
hot_rawdata);
/* Enable the corresponding sensor */
sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SEN(sen->id),
SPRD_THM_SEN(sen->id));
}
static void sprd_thm_para_config(struct sprd_thermal_data *thm)
{
/* Set the period of two valid temperature detection action */
sprd_thm_update_bits(thm->base + SPRD_THM_DET_PERIOD,
SPRD_THM_DET_PERIOD_MASK, SPRD_THM_DET_PERIOD);
/* Set the sensors' monitor mode */
sprd_thm_update_bits(thm->base + SPRD_THM_MON_CTL,
SPRD_THM_MON_MODE_MASK, SPRD_THM_MON_MODE);
/* Set the sensors' monitor period */
sprd_thm_update_bits(thm->base + SPRD_THM_MON_PERIOD,
SPRD_THM_MON_PERIOD_MASK, SPRD_THM_MON_PERIOD);
}
static void sprd_thm_toggle_sensor(struct sprd_thermal_sensor *sen, bool on)
{
struct thermal_zone_device *tzd = sen->tzd;
tzd->ops->set_mode(tzd,
on ? THERMAL_DEVICE_ENABLED : THERMAL_DEVICE_DISABLED);
}
static int sprd_thm_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device_node *sen_child;
struct sprd_thermal_data *thm;
struct sprd_thermal_sensor *sen;
const struct sprd_thm_variant_data *pdata;
int ret, i;
u32 val;
pdata = of_device_get_match_data(&pdev->dev);
if (!pdata) {
dev_err(&pdev->dev, "No matching driver data found\n");
return -EINVAL;
}
thm = devm_kzalloc(&pdev->dev, sizeof(*thm), GFP_KERNEL);
if (!thm)
return -ENOMEM;
thm->var_data = pdata;
thm->base = devm_platform_ioremap_resource(pdev, 0);
if (!thm->base)
return -ENOMEM;
thm->nr_sensors = of_get_child_count(np);
if (thm->nr_sensors == 0 || thm->nr_sensors > SPRD_THM_MAX_SENSOR) {
dev_err(&pdev->dev, "incorrect sensor count\n");
return -EINVAL;
}
thm->clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(thm->clk)) {
dev_err(&pdev->dev, "failed to get enable clock\n");
return PTR_ERR(thm->clk);
}
ret = clk_prepare_enable(thm->clk);
if (ret)
return ret;
sprd_thm_para_config(thm);
ret = sprd_thm_cal_read(np, "thm_sign_cal", &val);
if (ret)
goto disable_clk;
if (val > 0)
thm->ratio_sign = -1;
else
thm->ratio_sign = 1;
ret = sprd_thm_cal_read(np, "thm_ratio_cal", &thm->ratio_off);
if (ret)
goto disable_clk;
for_each_child_of_node(np, sen_child) {
sen = devm_kzalloc(&pdev->dev, sizeof(*sen), GFP_KERNEL);
if (!sen) {
ret = -ENOMEM;
goto disable_clk;
}
sen->data = thm;
sen->dev = &pdev->dev;
ret = of_property_read_u32(sen_child, "reg", &sen->id);
if (ret) {
dev_err(&pdev->dev, "get sensor reg failed");
goto disable_clk;
}
ret = sprd_thm_sensor_calibration(sen_child, thm, sen);
if (ret) {
dev_err(&pdev->dev, "efuse cal analysis failed");
goto disable_clk;
}
sprd_thm_sensor_init(thm, sen);
sen->tzd = devm_thermal_zone_of_sensor_register(sen->dev,
sen->id,
sen,
&sprd_thm_ops);
if (IS_ERR(sen->tzd)) {
dev_err(&pdev->dev, "register thermal zone failed %d\n",
sen->id);
ret = PTR_ERR(sen->tzd);
goto disable_clk;
}
thm->sensor[sen->id] = sen;
}
ret = sprd_thm_set_ready(thm);
if (ret)
goto disable_clk;
ret = sprd_thm_wait_temp_ready(thm);
if (ret)
goto disable_clk;
for (i = 0; i < thm->nr_sensors; i++)
sprd_thm_toggle_sensor(thm->sensor[i], true);
platform_set_drvdata(pdev, thm);
return 0;
disable_clk:
clk_disable_unprepare(thm->clk);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static void sprd_thm_hw_suspend(struct sprd_thermal_data *thm)
{
int i;
for (i = 0; i < thm->nr_sensors; i++) {
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_SEN(thm->sensor[i]->id), 0);
}
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_EN, 0x0);
}
static int sprd_thm_suspend(struct device *dev)
{
struct sprd_thermal_data *thm = dev_get_drvdata(dev);
int i;
for (i = 0; i < thm->nr_sensors; i++)
sprd_thm_toggle_sensor(thm->sensor[i], false);
sprd_thm_hw_suspend(thm);
clk_disable_unprepare(thm->clk);
return 0;
}
static int sprd_thm_hw_resume(struct sprd_thermal_data *thm)
{
int ret, i;
for (i = 0; i < thm->nr_sensors; i++) {
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_SEN(thm->sensor[i]->id),
SPRD_THM_SEN(thm->sensor[i]->id));
}
ret = sprd_thm_poll_ready_status(thm);
if (ret)
return ret;
writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_EN, SPRD_THM_EN);
return sprd_thm_wait_temp_ready(thm);
}
static int sprd_thm_resume(struct device *dev)
{
struct sprd_thermal_data *thm = dev_get_drvdata(dev);
int ret, i;
ret = clk_prepare_enable(thm->clk);
if (ret)
return ret;
ret = sprd_thm_hw_resume(thm);
if (ret)
goto disable_clk;
for (i = 0; i < thm->nr_sensors; i++)
sprd_thm_toggle_sensor(thm->sensor[i], true);
return 0;
disable_clk:
clk_disable_unprepare(thm->clk);
return ret;
}
#endif
static int sprd_thm_remove(struct platform_device *pdev)
{
struct sprd_thermal_data *thm = platform_get_drvdata(pdev);
int i;
for (i = 0; i < thm->nr_sensors; i++) {
sprd_thm_toggle_sensor(thm->sensor[i], false);
devm_thermal_zone_of_sensor_unregister(&pdev->dev,
thm->sensor[i]->tzd);
}
clk_disable_unprepare(thm->clk);
return 0;
}
static const struct of_device_id sprd_thermal_of_match[] = {
{ .compatible = "sprd,ums512-thermal", .data = &ums512_data },
{ },
};
static const struct dev_pm_ops sprd_thermal_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sprd_thm_suspend, sprd_thm_resume)
};
static struct platform_driver sprd_thermal_driver = {
.probe = sprd_thm_probe,
.remove = sprd_thm_remove,
.driver = {
.name = "sprd-thermal",
.pm = &sprd_thermal_pm_ops,
.of_match_table = sprd_thermal_of_match,
},
};
module_platform_driver(sprd_thermal_driver);
MODULE_AUTHOR("Freeman Liu <freeman.liu@unisoc.com>");
MODULE_DESCRIPTION("Spreadtrum thermal driver");
MODULE_LICENSE("GPL v2");
|