1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
#include <linux/export.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include "fbtft.h"
int fbtft_write_spi(struct fbtft_par *par, void *buf, size_t len)
{
struct spi_transfer t = {
.tx_buf = buf,
.len = len,
};
struct spi_message m;
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
if (!par->spi) {
dev_err(par->info->device,
"%s: par->spi is unexpectedly NULL\n", __func__);
return -1;
}
spi_message_init(&m);
if (par->txbuf.dma && buf == par->txbuf.buf) {
t.tx_dma = par->txbuf.dma;
m.is_dma_mapped = 1;
}
spi_message_add_tail(&t, &m);
return spi_sync(par->spi, &m);
}
EXPORT_SYMBOL(fbtft_write_spi);
/**
* fbtft_write_spi_emulate_9() - write SPI emulating 9-bit
* @par: Driver data
* @buf: Buffer to write
* @len: Length of buffer (must be divisible by 8)
*
* When 9-bit SPI is not available, this function can be used to emulate that.
* par->extra must hold a transformation buffer used for transfer.
*/
int fbtft_write_spi_emulate_9(struct fbtft_par *par, void *buf, size_t len)
{
u16 *src = buf;
u8 *dst = par->extra;
size_t size = len / 2;
size_t added = 0;
int bits, i, j;
u64 val, dc, tmp;
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
if (!par->extra) {
dev_err(par->info->device, "%s: error: par->extra is NULL\n",
__func__);
return -EINVAL;
}
if ((len % 8) != 0) {
dev_err(par->info->device,
"error: len=%zu must be divisible by 8\n", len);
return -EINVAL;
}
for (i = 0; i < size; i += 8) {
tmp = 0;
bits = 63;
for (j = 0; j < 7; j++) {
dc = (*src & 0x0100) ? 1 : 0;
val = *src & 0x00FF;
tmp |= dc << bits;
bits -= 8;
tmp |= val << bits--;
src++;
}
tmp |= ((*src & 0x0100) ? 1 : 0);
*(u64 *)dst = cpu_to_be64(tmp);
dst += 8;
*dst++ = (u8)(*src++ & 0x00FF);
added++;
}
return spi_write(par->spi, par->extra, size + added);
}
EXPORT_SYMBOL(fbtft_write_spi_emulate_9);
int fbtft_read_spi(struct fbtft_par *par, void *buf, size_t len)
{
int ret;
u8 txbuf[32] = { 0, };
struct spi_transfer t = {
.speed_hz = 2000000,
.rx_buf = buf,
.len = len,
};
struct spi_message m;
if (!par->spi) {
dev_err(par->info->device,
"%s: par->spi is unexpectedly NULL\n", __func__);
return -ENODEV;
}
if (par->startbyte) {
if (len > 32) {
dev_err(par->info->device,
"len=%zu can't be larger than 32 when using 'startbyte'\n",
len);
return -EINVAL;
}
txbuf[0] = par->startbyte | 0x3;
t.tx_buf = txbuf;
fbtft_par_dbg_hex(DEBUG_READ, par, par->info->device, u8,
txbuf, len, "%s(len=%d) txbuf => ", __func__, len);
}
spi_message_init(&m);
spi_message_add_tail(&t, &m);
ret = spi_sync(par->spi, &m);
fbtft_par_dbg_hex(DEBUG_READ, par, par->info->device, u8, buf, len,
"%s(len=%d) buf <= ", __func__, len);
return ret;
}
EXPORT_SYMBOL(fbtft_read_spi);
/*
* Optimized use of gpiolib is twice as fast as no optimization
* only one driver can use the optimized version at a time
*/
int fbtft_write_gpio8_wr(struct fbtft_par *par, void *buf, size_t len)
{
u8 data;
int i;
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
static u8 prev_data;
#endif
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
while (len--) {
data = *(u8 *) buf;
/* Start writing by pulling down /WR */
gpio_set_value(par->gpio.wr, 0);
/* Set data */
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
if (data == prev_data) {
gpio_set_value(par->gpio.wr, 0); /* used as delay */
} else {
for (i = 0; i < 8; i++) {
if ((data & 1) != (prev_data & 1))
gpio_set_value(par->gpio.db[i],
data & 1);
data >>= 1;
prev_data >>= 1;
}
}
#else
for (i = 0; i < 8; i++) {
gpio_set_value(par->gpio.db[i], data & 1);
data >>= 1;
}
#endif
/* Pullup /WR */
gpio_set_value(par->gpio.wr, 1);
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
prev_data = *(u8 *) buf;
#endif
buf++;
}
return 0;
}
EXPORT_SYMBOL(fbtft_write_gpio8_wr);
int fbtft_write_gpio16_wr(struct fbtft_par *par, void *buf, size_t len)
{
u16 data;
int i;
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
static u16 prev_data;
#endif
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
while (len) {
data = *(u16 *) buf;
/* Start writing by pulling down /WR */
gpio_set_value(par->gpio.wr, 0);
/* Set data */
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
if (data == prev_data) {
gpio_set_value(par->gpio.wr, 0); /* used as delay */
} else {
for (i = 0; i < 16; i++) {
if ((data & 1) != (prev_data & 1))
gpio_set_value(par->gpio.db[i],
data & 1);
data >>= 1;
prev_data >>= 1;
}
}
#else
for (i = 0; i < 16; i++) {
gpio_set_value(par->gpio.db[i], data & 1);
data >>= 1;
}
#endif
/* Pullup /WR */
gpio_set_value(par->gpio.wr, 1);
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
prev_data = *(u16 *) buf;
#endif
buf += 2;
len -= 2;
}
return 0;
}
EXPORT_SYMBOL(fbtft_write_gpio16_wr);
int fbtft_write_gpio16_wr_latched(struct fbtft_par *par, void *buf, size_t len)
{
dev_err(par->info->device, "%s: function not implemented\n", __func__);
return -1;
}
EXPORT_SYMBOL(fbtft_write_gpio16_wr_latched);
|