summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-fsl-qspi.c
blob: 79b1558b74b8a43254c6a57ec356632c122a0b42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
// SPDX-License-Identifier: GPL-2.0+

/*
 * Freescale QuadSPI driver.
 *
 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 * Copyright (C) 2018 Bootlin
 * Copyright (C) 2018 exceet electronics GmbH
 * Copyright (C) 2018 Kontron Electronics GmbH
 *
 * Transition to SPI MEM interface:
 * Authors:
 *     Boris Brezillon <bbrezillon@kernel.org>
 *     Frieder Schrempf <frieder.schrempf@kontron.de>
 *     Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
 *     Suresh Gupta <suresh.gupta@nxp.com>
 *
 * Based on the original fsl-quadspi.c spi-nor driver:
 * Author: Freescale Semiconductor, Inc.
 *
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/sizes.h>

#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>

/*
 * The driver only uses one single LUT entry, that is updated on
 * each call of exec_op(). Index 0 is preset at boot with a basic
 * read operation, so let's use the last entry (15).
 */
#define	SEQID_LUT			15

/* Registers used by the driver */
#define QUADSPI_MCR			0x00
#define QUADSPI_MCR_RESERVED_MASK	GENMASK(19, 16)
#define QUADSPI_MCR_MDIS_MASK		BIT(14)
#define QUADSPI_MCR_CLR_TXF_MASK	BIT(11)
#define QUADSPI_MCR_CLR_RXF_MASK	BIT(10)
#define QUADSPI_MCR_DDR_EN_MASK		BIT(7)
#define QUADSPI_MCR_END_CFG_MASK	GENMASK(3, 2)
#define QUADSPI_MCR_SWRSTHD_MASK	BIT(1)
#define QUADSPI_MCR_SWRSTSD_MASK	BIT(0)

#define QUADSPI_IPCR			0x08
#define QUADSPI_IPCR_SEQID(x)		((x) << 24)

#define QUADSPI_FLSHCR			0x0c
#define QUADSPI_FLSHCR_TCSS_MASK	GENMASK(3, 0)
#define QUADSPI_FLSHCR_TCSH_MASK	GENMASK(11, 8)
#define QUADSPI_FLSHCR_TDH_MASK		GENMASK(17, 16)

#define QUADSPI_BUF0CR                  0x10
#define QUADSPI_BUF1CR                  0x14
#define QUADSPI_BUF2CR                  0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID   0xe

#define QUADSPI_BUF3CR			0x1c
#define QUADSPI_BUF3CR_ALLMST_MASK	BIT(31)
#define QUADSPI_BUF3CR_ADATSZ(x)	((x) << 8)
#define QUADSPI_BUF3CR_ADATSZ_MASK	GENMASK(15, 8)

#define QUADSPI_BFGENCR			0x20
#define QUADSPI_BFGENCR_SEQID(x)	((x) << 12)

#define QUADSPI_BUF0IND			0x30
#define QUADSPI_BUF1IND			0x34
#define QUADSPI_BUF2IND			0x38
#define QUADSPI_SFAR			0x100

#define QUADSPI_SMPR			0x108
#define QUADSPI_SMPR_DDRSMP_MASK	GENMASK(18, 16)
#define QUADSPI_SMPR_FSDLY_MASK		BIT(6)
#define QUADSPI_SMPR_FSPHS_MASK		BIT(5)
#define QUADSPI_SMPR_HSENA_MASK		BIT(0)

#define QUADSPI_RBCT			0x110
#define QUADSPI_RBCT_WMRK_MASK		GENMASK(4, 0)
#define QUADSPI_RBCT_RXBRD_USEIPS	BIT(8)

#define QUADSPI_TBDR			0x154

#define QUADSPI_SR			0x15c
#define QUADSPI_SR_IP_ACC_MASK		BIT(1)
#define QUADSPI_SR_AHB_ACC_MASK		BIT(2)

#define QUADSPI_FR			0x160
#define QUADSPI_FR_TFF_MASK		BIT(0)

#define QUADSPI_RSER			0x164
#define QUADSPI_RSER_TFIE		BIT(0)

#define QUADSPI_SPTRCLR			0x16c
#define QUADSPI_SPTRCLR_IPPTRC		BIT(8)
#define QUADSPI_SPTRCLR_BFPTRC		BIT(0)

#define QUADSPI_SFA1AD			0x180
#define QUADSPI_SFA2AD			0x184
#define QUADSPI_SFB1AD			0x188
#define QUADSPI_SFB2AD			0x18c
#define QUADSPI_RBDR(x)			(0x200 + ((x) * 4))

#define QUADSPI_LUTKEY			0x300
#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0

#define QUADSPI_LCKCR			0x304
#define QUADSPI_LCKER_LOCK		BIT(0)
#define QUADSPI_LCKER_UNLOCK		BIT(1)

#define QUADSPI_LUT_BASE		0x310
#define QUADSPI_LUT_OFFSET		(SEQID_LUT * 4 * 4)
#define QUADSPI_LUT_REG(idx) \
	(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)

/* Instruction set for the LUT register */
#define LUT_STOP		0
#define LUT_CMD			1
#define LUT_ADDR		2
#define LUT_DUMMY		3
#define LUT_MODE		4
#define LUT_MODE2		5
#define LUT_MODE4		6
#define LUT_FSL_READ		7
#define LUT_FSL_WRITE		8
#define LUT_JMP_ON_CS		9
#define LUT_ADDR_DDR		10
#define LUT_MODE_DDR		11
#define LUT_MODE2_DDR		12
#define LUT_MODE4_DDR		13
#define LUT_FSL_READ_DDR	14
#define LUT_FSL_WRITE_DDR	15
#define LUT_DATA_LEARN		16

/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the number of IO lines [0:3].
 * For example, the quad read needs four IO lines,
 * so you should use LUT_PAD(4).
 */
#define LUT_PAD(x) (fls(x) - 1)

/*
 * Macro for constructing the LUT entries with the following
 * register layout:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define LUT_DEF(idx, ins, pad, opr)					\
	((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))

/* Controller needs driver to swap endianness */
#define QUADSPI_QUIRK_SWAP_ENDIAN	BIT(0)

/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK	BIT(1)

/*
 * TKT253890, the controller needs the driver to fill the txfifo with
 * 16 bytes at least to trigger a data transfer, even though the extra
 * data won't be transferred.
 */
#define QUADSPI_QUIRK_TKT253890		BIT(2)

/* TKT245618, the controller cannot wake up from wait mode */
#define QUADSPI_QUIRK_TKT245618		BIT(3)

/*
 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
 * internally. No need to add it when setting SFXXAD and SFAR registers
 */
#define QUADSPI_QUIRK_BASE_INTERNAL	BIT(4)

/*
 * Controller uses TDH bits in register QUADSPI_FLSHCR.
 * They need to be set in accordance with the DDR/SDR mode.
 */
#define QUADSPI_QUIRK_USE_TDH_SETTING	BIT(5)

struct fsl_qspi_devtype_data {
	unsigned int rxfifo;
	unsigned int txfifo;
	int invalid_mstrid;
	unsigned int ahb_buf_size;
	unsigned int quirks;
	bool little_endian;
};

static const struct fsl_qspi_devtype_data vybrid_data = {
	.rxfifo = SZ_128,
	.txfifo = SZ_64,
	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
	.ahb_buf_size = SZ_1K,
	.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
	.little_endian = true,
};

static const struct fsl_qspi_devtype_data imx6sx_data = {
	.rxfifo = SZ_128,
	.txfifo = SZ_512,
	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
	.ahb_buf_size = SZ_1K,
	.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
	.little_endian = true,
};

static const struct fsl_qspi_devtype_data imx7d_data = {
	.rxfifo = SZ_128,
	.txfifo = SZ_512,
	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
	.ahb_buf_size = SZ_1K,
	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
		  QUADSPI_QUIRK_USE_TDH_SETTING,
	.little_endian = true,
};

static const struct fsl_qspi_devtype_data imx6ul_data = {
	.rxfifo = SZ_128,
	.txfifo = SZ_512,
	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
	.ahb_buf_size = SZ_1K,
	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
		  QUADSPI_QUIRK_USE_TDH_SETTING,
	.little_endian = true,
};

static const struct fsl_qspi_devtype_data ls1021a_data = {
	.rxfifo = SZ_128,
	.txfifo = SZ_64,
	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
	.ahb_buf_size = SZ_1K,
	.quirks = 0,
	.little_endian = false,
};

static const struct fsl_qspi_devtype_data ls2080a_data = {
	.rxfifo = SZ_128,
	.txfifo = SZ_64,
	.ahb_buf_size = SZ_1K,
	.invalid_mstrid = 0x0,
	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
	.little_endian = true,
};

struct fsl_qspi {
	void __iomem *iobase;
	void __iomem *ahb_addr;
	u32 memmap_phy;
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
	const struct fsl_qspi_devtype_data *devtype_data;
	struct mutex lock;
	struct pm_qos_request pm_qos_req;
	int selected;
};

static inline int needs_swap_endian(struct fsl_qspi *q)
{
	return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
}

static inline int needs_4x_clock(struct fsl_qspi *q)
{
	return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
}

static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
}

static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
}

static inline int needs_amba_base_offset(struct fsl_qspi *q)
{
	return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
}

static inline int needs_tdh_setting(struct fsl_qspi *q)
{
	return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
}

/*
 * An IC bug makes it necessary to rearrange the 32-bit data.
 * Later chips, such as IMX6SLX, have fixed this bug.
 */
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
	return needs_swap_endian(q) ? __swab32(a) : a;
}

/*
 * R/W functions for big- or little-endian registers:
 * The QSPI controller's endianness is independent of
 * the CPU core's endianness. So far, although the CPU
 * core is little-endian the QSPI controller can use
 * big-endian or little-endian.
 */
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
	if (q->devtype_data->little_endian)
		iowrite32(val, addr);
	else
		iowrite32be(val, addr);
}

static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
	if (q->devtype_data->little_endian)
		return ioread32(addr);

	return ioread32be(addr);
}

static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_qspi *q = dev_id;
	u32 reg;

	/* clear interrupt */
	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
	qspi_writel(q, reg, q->iobase + QUADSPI_FR);

	if (reg & QUADSPI_FR_TFF_MASK)
		complete(&q->c);

	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
	return IRQ_HANDLED;
}

static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
{
	switch (width) {
	case 1:
	case 2:
	case 4:
		return 0;
	}

	return -ENOTSUPP;
}

static bool fsl_qspi_supports_op(struct spi_mem *mem,
				 const struct spi_mem_op *op)
{
	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
	int ret;

	ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);

	if (op->addr.nbytes)
		ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);

	if (op->dummy.nbytes)
		ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);

	if (op->data.nbytes)
		ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);

	if (ret)
		return false;

	/*
	 * The number of instructions needed for the op, needs
	 * to fit into a single LUT entry.
	 */
	if (op->addr.nbytes +
	   (op->dummy.nbytes ? 1:0) +
	   (op->data.nbytes ? 1:0) > 6)
		return false;

	/* Max 64 dummy clock cycles supported */
	if (op->dummy.nbytes &&
	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
		return false;

	/* Max data length, check controller limits and alignment */
	if (op->data.dir == SPI_MEM_DATA_IN &&
	    (op->data.nbytes > q->devtype_data->ahb_buf_size ||
	     (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
	      !IS_ALIGNED(op->data.nbytes, 8))))
		return false;

	if (op->data.dir == SPI_MEM_DATA_OUT &&
	    op->data.nbytes > q->devtype_data->txfifo)
		return false;

	return true;
}

static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
				 const struct spi_mem_op *op)
{
	void __iomem *base = q->iobase;
	u32 lutval[4] = {};
	int lutidx = 1, i;

	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
			     op->cmd.opcode);

	/*
	 * For some unknown reason, using LUT_ADDR doesn't work in some
	 * cases (at least with only one byte long addresses), so
	 * let's use LUT_MODE to write the address bytes one by one
	 */
	for (i = 0; i < op->addr.nbytes; i++) {
		u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));

		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
					      LUT_PAD(op->addr.buswidth),
					      addrbyte);
		lutidx++;
	}

	if (op->dummy.nbytes) {
		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
					      LUT_PAD(op->dummy.buswidth),
					      op->dummy.nbytes * 8 /
					      op->dummy.buswidth);
		lutidx++;
	}

	if (op->data.nbytes) {
		lutval[lutidx / 2] |= LUT_DEF(lutidx,
					      op->data.dir == SPI_MEM_DATA_IN ?
					      LUT_FSL_READ : LUT_FSL_WRITE,
					      LUT_PAD(op->data.buswidth),
					      0);
		lutidx++;
	}

	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);

	/* unlock LUT */
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);

	/* fill LUT */
	for (i = 0; i < ARRAY_SIZE(lutval); i++)
		qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));

	/* lock LUT */
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}

static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
	int ret;

	ret = clk_prepare_enable(q->clk_en);
	if (ret)
		return ret;

	ret = clk_prepare_enable(q->clk);
	if (ret) {
		clk_disable_unprepare(q->clk_en);
		return ret;
	}

	if (needs_wakeup_wait_mode(q))
		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);

	return 0;
}

static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
	if (needs_wakeup_wait_mode(q))
		pm_qos_remove_request(&q->pm_qos_req);

	clk_disable_unprepare(q->clk);
	clk_disable_unprepare(q->clk_en);
}

/*
 * If we have changed the content of the flash by writing or erasing, or if we
 * read from flash with a different offset into the page buffer, we need to
 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
 * data. The spec tells us reset the AHB domain and Serial Flash domain at
 * the same time.
 */
static void fsl_qspi_invalidate(struct fsl_qspi *q)
{
	u32 reg;

	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
}

static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
{
	unsigned long rate = spi->max_speed_hz;
	int ret;

	if (q->selected == spi->chip_select)
		return;

	if (needs_4x_clock(q))
		rate *= 4;

	fsl_qspi_clk_disable_unprep(q);

	ret = clk_set_rate(q->clk, rate);
	if (ret)
		return;

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return;

	q->selected = spi->chip_select;

	fsl_qspi_invalidate(q);
}

static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
{
	memcpy_fromio(op->data.buf.in,
		      q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
		      op->data.nbytes);
}

static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
				 const struct spi_mem_op *op)
{
	void __iomem *base = q->iobase;
	int i;
	u32 val;

	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
		memcpy(&val, op->data.buf.out + i, 4);
		val = fsl_qspi_endian_xchg(q, val);
		qspi_writel(q, val, base + QUADSPI_TBDR);
	}

	if (i < op->data.nbytes) {
		memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
		val = fsl_qspi_endian_xchg(q, val);
		qspi_writel(q, val, base + QUADSPI_TBDR);
	}

	if (needs_fill_txfifo(q)) {
		for (i = op->data.nbytes; i < 16; i += 4)
			qspi_writel(q, 0, base + QUADSPI_TBDR);
	}
}

static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
			  const struct spi_mem_op *op)
{
	void __iomem *base = q->iobase;
	int i;
	u8 *buf = op->data.buf.in;
	u32 val;

	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
		val = fsl_qspi_endian_xchg(q, val);
		memcpy(buf + i, &val, 4);
	}

	if (i < op->data.nbytes) {
		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
		val = fsl_qspi_endian_xchg(q, val);
		memcpy(buf + i, &val, op->data.nbytes - i);
	}
}

static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
{
	void __iomem *base = q->iobase;
	int err = 0;

	init_completion(&q->c);

	/*
	 * Always start the sequence at the same index since we update
	 * the LUT at each exec_op() call. And also specify the DATA
	 * length, since it's has not been specified in the LUT.
	 */
	qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
		    base + QUADSPI_IPCR);

	/* Wait for the interrupt. */
	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
		err = -ETIMEDOUT;

	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
		fsl_qspi_read_rxfifo(q, op);

	return err;
}

static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
				    u32 mask, u32 delay_us, u32 timeout_us)
{
	u32 reg;

	if (!q->devtype_data->little_endian)
		mask = (u32)cpu_to_be32(mask);

	return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
				  timeout_us);
}

static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
	void __iomem *base = q->iobase;
	u32 addr_offset = 0;
	int err = 0;
	int invalid_mstrid = q->devtype_data->invalid_mstrid;

	mutex_lock(&q->lock);

	/* wait for the controller being ready */
	fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
				 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);

	fsl_qspi_select_mem(q, mem->spi);

	if (needs_amba_base_offset(q))
		addr_offset = q->memmap_phy;

	qspi_writel(q,
		    q->selected * q->devtype_data->ahb_buf_size + addr_offset,
		    base + QUADSPI_SFAR);

	qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
		    QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
		    base + QUADSPI_MCR);

	qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
		    base + QUADSPI_SPTRCLR);

	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);

	fsl_qspi_prepare_lut(q, op);

	/*
	 * If we have large chunks of data, we read them through the AHB bus
	 * by accessing the mapped memory. In all other cases we use
	 * IP commands to access the flash.
	 */
	if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
	    op->data.dir == SPI_MEM_DATA_IN) {
		fsl_qspi_read_ahb(q, op);
	} else {
		qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
			    QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);

		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
			fsl_qspi_fill_txfifo(q, op);

		err = fsl_qspi_do_op(q, op);
	}

	/* Invalidate the data in the AHB buffer. */
	fsl_qspi_invalidate(q);

	mutex_unlock(&q->lock);

	return err;
}

static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);

	if (op->data.dir == SPI_MEM_DATA_OUT) {
		if (op->data.nbytes > q->devtype_data->txfifo)
			op->data.nbytes = q->devtype_data->txfifo;
	} else {
		if (op->data.nbytes > q->devtype_data->ahb_buf_size)
			op->data.nbytes = q->devtype_data->ahb_buf_size;
		else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
	}

	return 0;
}

static int fsl_qspi_default_setup(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	u32 reg, addr_offset = 0;
	int ret;

	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

	/* the default frequency, we will change it later if necessary. */
	ret = clk_set_rate(q->clk, 66000000);
	if (ret)
		return ret;

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

	/* Reset the module */
	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
		    base + QUADSPI_MCR);
	udelay(1);

	/* Disable the module */
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
		    base + QUADSPI_MCR);

	/*
	 * Previous boot stages (BootROM, bootloader) might have used DDR
	 * mode and did not clear the TDH bits. As we currently use SDR mode
	 * only, clear the TDH bits if necessary.
	 */
	if (needs_tdh_setting(q))
		qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
			    ~QUADSPI_FLSHCR_TDH_MASK,
			    base + QUADSPI_FLSHCR);

	reg = qspi_readl(q, base + QUADSPI_SMPR);
	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
			| QUADSPI_SMPR_FSPHS_MASK
			| QUADSPI_SMPR_HSENA_MASK
			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);

	/* We only use the buffer3 for AHB read */
	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
	qspi_writel(q, 0, base + QUADSPI_BUF2IND);

	qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
		    q->iobase + QUADSPI_BFGENCR);
	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
		    QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
		    base + QUADSPI_BUF3CR);

	if (needs_amba_base_offset(q))
		addr_offset = q->memmap_phy;

	/*
	 * In HW there can be a maximum of four chips on two buses with
	 * two chip selects on each bus. We use four chip selects in SW
	 * to differentiate between the four chips.
	 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
	 * SFB2AD accordingly.
	 */
	qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
		    base + QUADSPI_SFA1AD);
	qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
		    base + QUADSPI_SFA2AD);
	qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
		    base + QUADSPI_SFB1AD);
	qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
		    base + QUADSPI_SFB2AD);

	q->selected = -1;

	/* Enable the module */
	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
		    base + QUADSPI_MCR);

	/* clear all interrupt status */
	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);

	/* enable the interrupt */
	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);

	return 0;
}

static const char *fsl_qspi_get_name(struct spi_mem *mem)
{
	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
	struct device *dev = &mem->spi->dev;
	const char *name;

	/*
	 * In order to keep mtdparts compatible with the old MTD driver at
	 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
	 * platform_device of the controller.
	 */
	if (of_get_available_child_count(q->dev->of_node) == 1)
		return dev_name(q->dev);

	name = devm_kasprintf(dev, GFP_KERNEL,
			      "%s-%d", dev_name(q->dev),
			      mem->spi->chip_select);

	if (!name) {
		dev_err(dev, "failed to get memory for custom flash name\n");
		return ERR_PTR(-ENOMEM);
	}

	return name;
}

static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
	.adjust_op_size = fsl_qspi_adjust_op_size,
	.supports_op = fsl_qspi_supports_op,
	.exec_op = fsl_qspi_exec_op,
	.get_name = fsl_qspi_get_name,
};

static int fsl_qspi_probe(struct platform_device *pdev)
{
	struct spi_controller *ctlr;
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct resource *res;
	struct fsl_qspi *q;
	int ret;

	ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
	if (!ctlr)
		return -ENOMEM;

	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
			  SPI_TX_DUAL | SPI_TX_QUAD;

	q = spi_controller_get_devdata(ctlr);
	q->dev = dev;
	q->devtype_data = of_device_get_match_data(dev);
	if (!q->devtype_data) {
		ret = -ENODEV;
		goto err_put_ctrl;
	}

	platform_set_drvdata(pdev, q);

	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
	q->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(q->iobase)) {
		ret = PTR_ERR(q->iobase);
		goto err_put_ctrl;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"QuadSPI-memory");
	q->ahb_addr = devm_ioremap_resource(dev, res);
	if (IS_ERR(q->ahb_addr)) {
		ret = PTR_ERR(q->ahb_addr);
		goto err_put_ctrl;
	}

	q->memmap_phy = res->start;

	/* find the clocks */
	q->clk_en = devm_clk_get(dev, "qspi_en");
	if (IS_ERR(q->clk_en)) {
		ret = PTR_ERR(q->clk_en);
		goto err_put_ctrl;
	}

	q->clk = devm_clk_get(dev, "qspi");
	if (IS_ERR(q->clk)) {
		ret = PTR_ERR(q->clk);
		goto err_put_ctrl;
	}

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret) {
		dev_err(dev, "can not enable the clock\n");
		goto err_put_ctrl;
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0)
		goto err_disable_clk;

	ret = devm_request_irq(dev, ret,
			fsl_qspi_irq_handler, 0, pdev->name, q);
	if (ret) {
		dev_err(dev, "failed to request irq: %d\n", ret);
		goto err_disable_clk;
	}

	mutex_init(&q->lock);

	ctlr->bus_num = -1;
	ctlr->num_chipselect = 4;
	ctlr->mem_ops = &fsl_qspi_mem_ops;

	fsl_qspi_default_setup(q);

	ctlr->dev.of_node = np;

	ret = devm_spi_register_controller(dev, ctlr);
	if (ret)
		goto err_destroy_mutex;

	return 0;

err_destroy_mutex:
	mutex_destroy(&q->lock);

err_disable_clk:
	fsl_qspi_clk_disable_unprep(q);

err_put_ctrl:
	spi_controller_put(ctlr);

	dev_err(dev, "Freescale QuadSPI probe failed\n");
	return ret;
}

static int fsl_qspi_remove(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);

	/* disable the hardware */
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);

	fsl_qspi_clk_disable_unprep(q);

	mutex_destroy(&q->lock);

	return 0;
}

static int fsl_qspi_suspend(struct device *dev)
{
	return 0;
}

static int fsl_qspi_resume(struct device *dev)
{
	struct fsl_qspi *q = dev_get_drvdata(dev);

	fsl_qspi_default_setup(q);

	return 0;
}

static const struct of_device_id fsl_qspi_dt_ids[] = {
	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
	{ .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
	{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);

static const struct dev_pm_ops fsl_qspi_pm_ops = {
	.suspend	= fsl_qspi_suspend,
	.resume		= fsl_qspi_resume,
};

static struct platform_driver fsl_qspi_driver = {
	.driver = {
		.name	= "fsl-quadspi",
		.of_match_table = fsl_qspi_dt_ids,
		.pm =   &fsl_qspi_pm_ops,
	},
	.probe          = fsl_qspi_probe,
	.remove		= fsl_qspi_remove,
};
module_platform_driver(fsl_qspi_driver);

MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
MODULE_LICENSE("GPL v2");