1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
/*
* Interface for the 93C66/56/46/26/06 serial eeprom parts.
*
* Copyright (c) 1995, 1996 Daniel M. Eischen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: //depot/aic7xxx/aic7xxx/aic7xxx_93cx6.c#19 $
*/
/*
* The instruction set of the 93C66/56/46/26/06 chips are as follows:
*
* Start OP *
* Function Bit Code Address** Data Description
* -------------------------------------------------------------------
* READ 1 10 A5 - A0 Reads data stored in memory,
* starting at specified address
* EWEN 1 00 11XXXX Write enable must precede
* all programming modes
* ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
* WRITE 1 01 A5 - A0 D15 - D0 Writes register
* ERAL 1 00 10XXXX Erase all registers
* WRAL 1 00 01XXXX D15 - D0 Writes to all registers
* EWDS 1 00 00XXXX Disables all programming
* instructions
* *Note: A value of X for address is a don't care condition.
* **Note: There are 8 address bits for the 93C56/66 chips unlike
* the 93C46/26/06 chips which have 6 address bits.
*
* The 93C46 has a four wire interface: clock, chip select, data in, and
* data out. In order to perform one of the above functions, you need
* to enable the chip select for a clock period (typically a minimum of
* 1 usec, with the clock high and low a minimum of 750 and 250 nsec
* respectively). While the chip select remains high, you can clock in
* the instructions (above) starting with the start bit, followed by the
* OP code, Address, and Data (if needed). For the READ instruction, the
* requested 16-bit register contents is read from the data out line but
* is preceded by an initial zero (leading 0, followed by 16-bits, MSB
* first). The clock cycling from low to high initiates the next data
* bit to be sent from the chip.
*/
#include "aic7xxx_osm.h"
#include "aic7xxx_inline.h"
#include "aic7xxx_93cx6.h"
/*
* Right now, we only have to read the SEEPROM. But we make it easier to
* add other 93Cx6 functions.
*/
struct seeprom_cmd {
uint8_t len;
uint8_t bits[11];
};
/* Short opcodes for the c46 */
static const struct seeprom_cmd seeprom_ewen = {9, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
static const struct seeprom_cmd seeprom_ewds = {9, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
/* Long opcodes for the C56/C66 */
static const struct seeprom_cmd seeprom_long_ewen = {11, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
static const struct seeprom_cmd seeprom_long_ewds = {11, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
/* Common opcodes */
static const struct seeprom_cmd seeprom_write = {3, {1, 0, 1}};
static const struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
/*
* Wait for the SEERDY to go high; about 800 ns.
*/
#define CLOCK_PULSE(sd, rdy) \
while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) { \
; /* Do nothing */ \
} \
(void)SEEPROM_INB(sd); /* Clear clock */
/*
* Send a START condition and the given command
*/
static void
send_seeprom_cmd(struct seeprom_descriptor *sd, const struct seeprom_cmd *cmd)
{
uint8_t temp;
int i = 0;
/* Send chip select for one clock cycle. */
temp = sd->sd_MS ^ sd->sd_CS;
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
for (i = 0; i < cmd->len; i++) {
if (cmd->bits[i] != 0)
temp ^= sd->sd_DO;
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
if (cmd->bits[i] != 0)
temp ^= sd->sd_DO;
}
}
/*
* Clear CS put the chip in the reset state, where it can wait for new commands.
*/
static void
reset_seeprom(struct seeprom_descriptor *sd)
{
uint8_t temp;
temp = sd->sd_MS;
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
}
/*
* Read the serial EEPROM and returns 1 if successful and 0 if
* not successful.
*/
int
ahc_read_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
u_int start_addr, u_int count)
{
int i = 0;
u_int k = 0;
uint16_t v;
uint8_t temp;
/*
* Read the requested registers of the seeprom. The loop
* will range from 0 to count-1.
*/
for (k = start_addr; k < count + start_addr; k++) {
/*
* Now we're ready to send the read command followed by the
* address of the 16-bit register we want to read.
*/
send_seeprom_cmd(sd, &seeprom_read);
/* Send the 6 or 8 bit address (MSB first, LSB last). */
temp = sd->sd_MS ^ sd->sd_CS;
for (i = (sd->sd_chip - 1); i >= 0; i--) {
if ((k & (1 << i)) != 0)
temp ^= sd->sd_DO;
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
if ((k & (1 << i)) != 0)
temp ^= sd->sd_DO;
}
/*
* Now read the 16 bit register. An initial 0 precedes the
* register contents which begins with bit 15 (MSB) and ends
* with bit 0 (LSB). The initial 0 will be shifted off the
* top of our word as we let the loop run from 0 to 16.
*/
v = 0;
for (i = 16; i >= 0; i--) {
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
v <<= 1;
if (SEEPROM_DATA_INB(sd) & sd->sd_DI)
v |= 1;
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
}
buf[k - start_addr] = v;
/* Reset the chip select for the next command cycle. */
reset_seeprom(sd);
}
#ifdef AHC_DUMP_EEPROM
printk("\nSerial EEPROM:\n\t");
for (k = 0; k < count; k = k + 1) {
if (((k % 8) == 0) && (k != 0)) {
printk(KERN_CONT "\n\t");
}
printk(KERN_CONT " 0x%x", buf[k]);
}
printk(KERN_CONT "\n");
#endif
return (1);
}
/*
* Write the serial EEPROM and return 1 if successful and 0 if
* not successful.
*/
int
ahc_write_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
u_int start_addr, u_int count)
{
const struct seeprom_cmd *ewen, *ewds;
uint16_t v;
uint8_t temp;
int i, k;
/* Place the chip into write-enable mode */
if (sd->sd_chip == C46) {
ewen = &seeprom_ewen;
ewds = &seeprom_ewds;
} else if (sd->sd_chip == C56_66) {
ewen = &seeprom_long_ewen;
ewds = &seeprom_long_ewds;
} else {
printk("ahc_write_seeprom: unsupported seeprom type %d\n",
sd->sd_chip);
return (0);
}
send_seeprom_cmd(sd, ewen);
reset_seeprom(sd);
/* Write all requested data out to the seeprom. */
temp = sd->sd_MS ^ sd->sd_CS;
for (k = start_addr; k < count + start_addr; k++) {
/* Send the write command */
send_seeprom_cmd(sd, &seeprom_write);
/* Send the 6 or 8 bit address (MSB first). */
for (i = (sd->sd_chip - 1); i >= 0; i--) {
if ((k & (1 << i)) != 0)
temp ^= sd->sd_DO;
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
if ((k & (1 << i)) != 0)
temp ^= sd->sd_DO;
}
/* Write the 16 bit value, MSB first */
v = buf[k - start_addr];
for (i = 15; i >= 0; i--) {
if ((v & (1 << i)) != 0)
temp ^= sd->sd_DO;
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
if ((v & (1 << i)) != 0)
temp ^= sd->sd_DO;
}
/* Wait for the chip to complete the write */
temp = sd->sd_MS;
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
temp = sd->sd_MS ^ sd->sd_CS;
do {
SEEPROM_OUTB(sd, temp);
CLOCK_PULSE(sd, sd->sd_RDY);
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
CLOCK_PULSE(sd, sd->sd_RDY);
} while ((SEEPROM_DATA_INB(sd) & sd->sd_DI) == 0);
reset_seeprom(sd);
}
/* Put the chip back into write-protect mode */
send_seeprom_cmd(sd, ewds);
reset_seeprom(sd);
return (1);
}
int
ahc_verify_cksum(struct seeprom_config *sc)
{
int i;
int maxaddr;
uint32_t checksum;
uint16_t *scarray;
maxaddr = (sizeof(*sc)/2) - 1;
checksum = 0;
scarray = (uint16_t *)sc;
for (i = 0; i < maxaddr; i++)
checksum = checksum + scarray[i];
if (checksum == 0
|| (checksum & 0xFFFF) != sc->checksum) {
return (0);
} else {
return(1);
}
}
|