1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Author: Ludovic.barre@st.com for STMicroelectronics.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include "mmci.h"
#define SDMMC_LLI_BUF_LEN PAGE_SIZE
#define SDMMC_IDMA_BURST BIT(MMCI_STM32_IDMABNDT_SHIFT)
struct sdmmc_lli_desc {
u32 idmalar;
u32 idmabase;
u32 idmasize;
};
struct sdmmc_priv {
dma_addr_t sg_dma;
void *sg_cpu;
};
int sdmmc_idma_validate_data(struct mmci_host *host,
struct mmc_data *data)
{
struct scatterlist *sg;
int i;
/*
* idma has constraints on idmabase & idmasize for each element
* excepted the last element which has no constraint on idmasize
*/
for_each_sg(data->sg, sg, data->sg_len - 1, i) {
if (!IS_ALIGNED(sg_dma_address(data->sg), sizeof(u32)) ||
!IS_ALIGNED(sg_dma_len(data->sg), SDMMC_IDMA_BURST)) {
dev_err(mmc_dev(host->mmc),
"unaligned scatterlist: ofst:%x length:%d\n",
data->sg->offset, data->sg->length);
return -EINVAL;
}
}
if (!IS_ALIGNED(sg_dma_address(data->sg), sizeof(u32))) {
dev_err(mmc_dev(host->mmc),
"unaligned last scatterlist: ofst:%x length:%d\n",
data->sg->offset, data->sg->length);
return -EINVAL;
}
return 0;
}
static int _sdmmc_idma_prep_data(struct mmci_host *host,
struct mmc_data *data)
{
int n_elem;
n_elem = dma_map_sg(mmc_dev(host->mmc),
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
if (!n_elem) {
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
return -EINVAL;
}
return 0;
}
static int sdmmc_idma_prep_data(struct mmci_host *host,
struct mmc_data *data, bool next)
{
/* Check if job is already prepared. */
if (!next && data->host_cookie == host->next_cookie)
return 0;
return _sdmmc_idma_prep_data(host, data);
}
static void sdmmc_idma_unprep_data(struct mmci_host *host,
struct mmc_data *data, int err)
{
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
static int sdmmc_idma_setup(struct mmci_host *host)
{
struct sdmmc_priv *idma;
idma = devm_kzalloc(mmc_dev(host->mmc), sizeof(*idma), GFP_KERNEL);
if (!idma)
return -ENOMEM;
host->dma_priv = idma;
if (host->variant->dma_lli) {
idma->sg_cpu = dmam_alloc_coherent(mmc_dev(host->mmc),
SDMMC_LLI_BUF_LEN,
&idma->sg_dma, GFP_KERNEL);
if (!idma->sg_cpu) {
dev_err(mmc_dev(host->mmc),
"Failed to alloc IDMA descriptor\n");
return -ENOMEM;
}
host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
sizeof(struct sdmmc_lli_desc);
host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
} else {
host->mmc->max_segs = 1;
host->mmc->max_seg_size = host->mmc->max_req_size;
}
return 0;
}
static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
{
struct sdmmc_priv *idma = host->dma_priv;
struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
struct mmc_data *data = host->data;
struct scatterlist *sg;
int i;
if (!host->variant->dma_lli || data->sg_len == 1) {
writel_relaxed(sg_dma_address(data->sg),
host->base + MMCI_STM32_IDMABASE0R);
writel_relaxed(MMCI_STM32_IDMAEN,
host->base + MMCI_STM32_IDMACTRLR);
return 0;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
| MMCI_STM32_ABR;
desc[i].idmabase = sg_dma_address(sg);
desc[i].idmasize = sg_dma_len(sg);
}
/* notice the end of link list */
desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
dma_wmb();
writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
host->base + MMCI_STM32_IDMACTRLR);
return 0;
}
static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
{
writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
}
static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
{
unsigned int clk = 0, ddr = 0;
if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
ddr = MCI_STM32_CLK_DDR;
/*
* cclk = mclk / (2 * clkdiv)
* clkdiv 0 => bypass
* in ddr mode bypass is not possible
*/
if (desired) {
if (desired >= host->mclk && !ddr) {
host->cclk = host->mclk;
} else {
clk = DIV_ROUND_UP(host->mclk, 2 * desired);
if (clk > MCI_STM32_CLK_CLKDIV_MSK)
clk = MCI_STM32_CLK_CLKDIV_MSK;
host->cclk = host->mclk / (2 * clk);
}
} else {
/*
* while power-on phase the clock can't be define to 0,
* Only power-off and power-cyc deactivate the clock.
* if desired clock is 0, set max divider
*/
clk = MCI_STM32_CLK_CLKDIV_MSK;
host->cclk = host->mclk / (2 * clk);
}
/* Set actual clock for debug */
if (host->mmc->ios.power_mode == MMC_POWER_ON)
host->mmc->actual_clock = host->cclk;
else
host->mmc->actual_clock = 0;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_STM32_CLK_WIDEBUS_4;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
clk |= MCI_STM32_CLK_WIDEBUS_8;
clk |= MCI_STM32_CLK_HWFCEN;
clk |= host->clk_reg_add;
clk |= ddr;
/*
* SDMMC_FBCK is selected when an external Delay Block is needed
* with SDR104.
*/
if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
clk |= MCI_STM32_CLK_BUSSPEED;
if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104) {
clk &= ~MCI_STM32_CLK_SEL_MSK;
clk |= MCI_STM32_CLK_SELFBCK;
}
}
mmci_write_clkreg(host, clk);
}
static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
{
struct mmc_ios ios = host->mmc->ios;
pwr = host->pwr_reg_add;
if (ios.power_mode == MMC_POWER_OFF) {
/* Only a reset could power-off sdmmc */
reset_control_assert(host->rst);
udelay(2);
reset_control_deassert(host->rst);
/*
* Set the SDMMC in Power-cycle state.
* This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
* are driven low, to prevent the Card from being supplied
* through the signal lines.
*/
mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
} else if (ios.power_mode == MMC_POWER_ON) {
/*
* After power-off (reset): the irq mask defined in probe
* functionis lost
* ault irq mask (probe) must be activated
*/
writel(MCI_IRQENABLE | host->variant->start_err,
host->base + MMCIMASK0);
/*
* After a power-cycle state, we must set the SDMMC in
* Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
* driven high. Then we can set the SDMMC to Power-on state
*/
mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
mdelay(1);
mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
}
}
static struct mmci_host_ops sdmmc_variant_ops = {
.validate_data = sdmmc_idma_validate_data,
.prep_data = sdmmc_idma_prep_data,
.unprep_data = sdmmc_idma_unprep_data,
.dma_setup = sdmmc_idma_setup,
.dma_start = sdmmc_idma_start,
.dma_finalize = sdmmc_idma_finalize,
.set_clkreg = mmci_sdmmc_set_clkreg,
.set_pwrreg = mmci_sdmmc_set_pwrreg,
};
void sdmmc_variant_init(struct mmci_host *host)
{
host->ops = &sdmmc_variant_ops;
}
|