summaryrefslogtreecommitdiffstats
path: root/drivers/hwmon/lineage-pem.c
blob: ce5b0598524cbf02ac398de8f34baa11f631b793 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Driver for Lineage Compact Power Line series of power entry modules.
 *
 * Copyright (C) 2010, 2011 Ericsson AB.
 *
 * Documentation:
 *  http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>

/*
 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
 *
 * The devices are nominally PMBus compliant. However, most standard PMBus
 * commands are not supported. Specifically, all hardware monitoring and
 * status reporting commands are non-standard. For this reason, a standard
 * PMBus driver can not be used.
 *
 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
 * To ensure device access, this driver should only be used as client driver
 * to the pca9541 I2C master selector driver.
 */

/* Command codes */
#define PEM_OPERATION		0x01
#define PEM_CLEAR_INFO_FLAGS	0x03
#define PEM_VOUT_COMMAND	0x21
#define PEM_VOUT_OV_FAULT_LIMIT	0x40
#define PEM_READ_DATA_STRING	0xd0
#define PEM_READ_INPUT_STRING	0xdc
#define PEM_READ_FIRMWARE_REV	0xdd
#define PEM_READ_RUN_TIMER	0xde
#define PEM_FAN_HI_SPEED	0xdf
#define PEM_FAN_NORMAL_SPEED	0xe0
#define PEM_READ_FAN_SPEED	0xe1

/* offsets in data string */
#define PEM_DATA_STATUS_2	0
#define PEM_DATA_STATUS_1	1
#define PEM_DATA_ALARM_2	2
#define PEM_DATA_ALARM_1	3
#define PEM_DATA_VOUT_LSB	4
#define PEM_DATA_VOUT_MSB	5
#define PEM_DATA_CURRENT	6
#define PEM_DATA_TEMP		7

/* Virtual entries, to report constants */
#define PEM_DATA_TEMP_MAX	10
#define PEM_DATA_TEMP_CRIT	11

/* offsets in input string */
#define PEM_INPUT_VOLTAGE	0
#define PEM_INPUT_POWER_LSB	1
#define PEM_INPUT_POWER_MSB	2

/* offsets in fan data */
#define PEM_FAN_ADJUSTMENT	0
#define PEM_FAN_FAN1		1
#define PEM_FAN_FAN2		2
#define PEM_FAN_FAN3		3

/* Status register bits */
#define STS1_OUTPUT_ON		(1 << 0)
#define STS1_LEDS_FLASHING	(1 << 1)
#define STS1_EXT_FAULT		(1 << 2)
#define STS1_SERVICE_LED_ON	(1 << 3)
#define STS1_SHUTDOWN_OCCURRED	(1 << 4)
#define STS1_INT_FAULT		(1 << 5)
#define STS1_ISOLATION_TEST_OK	(1 << 6)

#define STS2_ENABLE_PIN_HI	(1 << 0)
#define STS2_DATA_OUT_RANGE	(1 << 1)
#define STS2_RESTARTED_OK	(1 << 1)
#define STS2_ISOLATION_TEST_FAIL (1 << 3)
#define STS2_HIGH_POWER_CAP	(1 << 4)
#define STS2_INVALID_INSTR	(1 << 5)
#define STS2_WILL_RESTART	(1 << 6)
#define STS2_PEC_ERR		(1 << 7)

/* Alarm register bits */
#define ALRM1_VIN_OUT_LIMIT	(1 << 0)
#define ALRM1_VOUT_OUT_LIMIT	(1 << 1)
#define ALRM1_OV_VOLT_SHUTDOWN	(1 << 2)
#define ALRM1_VIN_OVERCURRENT	(1 << 3)
#define ALRM1_TEMP_WARNING	(1 << 4)
#define ALRM1_TEMP_SHUTDOWN	(1 << 5)
#define ALRM1_PRIMARY_FAULT	(1 << 6)
#define ALRM1_POWER_LIMIT	(1 << 7)

#define ALRM2_5V_OUT_LIMIT	(1 << 1)
#define ALRM2_TEMP_FAULT	(1 << 2)
#define ALRM2_OV_LOW		(1 << 3)
#define ALRM2_DCDC_TEMP_HIGH	(1 << 4)
#define ALRM2_PRI_TEMP_HIGH	(1 << 5)
#define ALRM2_NO_PRIMARY	(1 << 6)
#define ALRM2_FAN_FAULT		(1 << 7)

#define FIRMWARE_REV_LEN	4
#define DATA_STRING_LEN		9
#define INPUT_STRING_LEN	5	/* 4 for most devices	*/
#define FAN_SPEED_LEN		5

struct pem_data {
	struct i2c_client *client;
	const struct attribute_group *groups[4];

	struct mutex update_lock;
	bool valid;
	bool fans_supported;
	int input_length;
	unsigned long last_updated;	/* in jiffies */

	u8 firmware_rev[FIRMWARE_REV_LEN];
	u8 data_string[DATA_STRING_LEN];
	u8 input_string[INPUT_STRING_LEN];
	u8 fan_speed[FAN_SPEED_LEN];
};

static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
			  int data_len)
{
	u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
	int result;

	result = i2c_smbus_read_block_data(client, command, block_buffer);
	if (unlikely(result < 0))
		goto abort;
	if (unlikely(result == 0xff || result != data_len)) {
		result = -EIO;
		goto abort;
	}
	memcpy(data, block_buffer, data_len);
	result = 0;
abort:
	return result;
}

static struct pem_data *pem_update_device(struct device *dev)
{
	struct pem_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	struct pem_data *ret = data;

	mutex_lock(&data->update_lock);

	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
		int result;

		/* Read data string */
		result = pem_read_block(client, PEM_READ_DATA_STRING,
					data->data_string,
					sizeof(data->data_string));
		if (unlikely(result < 0)) {
			ret = ERR_PTR(result);
			goto abort;
		}

		/* Read input string */
		if (data->input_length) {
			result = pem_read_block(client, PEM_READ_INPUT_STRING,
						data->input_string,
						data->input_length);
			if (unlikely(result < 0)) {
				ret = ERR_PTR(result);
				goto abort;
			}
		}

		/* Read fan speeds */
		if (data->fans_supported) {
			result = pem_read_block(client, PEM_READ_FAN_SPEED,
						data->fan_speed,
						sizeof(data->fan_speed));
			if (unlikely(result < 0)) {
				ret = ERR_PTR(result);
				goto abort;
			}
		}

		i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);

		data->last_updated = jiffies;
		data->valid = 1;
	}
abort:
	mutex_unlock(&data->update_lock);
	return ret;
}

static long pem_get_data(u8 *data, int len, int index)
{
	long val;

	switch (index) {
	case PEM_DATA_VOUT_LSB:
		val = (data[index] + (data[index+1] << 8)) * 5 / 2;
		break;
	case PEM_DATA_CURRENT:
		val = data[index] * 200;
		break;
	case PEM_DATA_TEMP:
		val = data[index] * 1000;
		break;
	case PEM_DATA_TEMP_MAX:
		val = 97 * 1000;	/* 97 degrees C per datasheet */
		break;
	case PEM_DATA_TEMP_CRIT:
		val = 107 * 1000;	/* 107 degrees C per datasheet */
		break;
	default:
		WARN_ON_ONCE(1);
		val = 0;
	}
	return val;
}

static long pem_get_input(u8 *data, int len, int index)
{
	long val;

	switch (index) {
	case PEM_INPUT_VOLTAGE:
		if (len == INPUT_STRING_LEN)
			val = (data[index] + (data[index+1] << 8) - 75) * 1000;
		else
			val = (data[index] - 75) * 1000;
		break;
	case PEM_INPUT_POWER_LSB:
		if (len == INPUT_STRING_LEN)
			index++;
		val = (data[index] + (data[index+1] << 8)) * 1000000L;
		break;
	default:
		WARN_ON_ONCE(1);
		val = 0;
	}
	return val;
}

static long pem_get_fan(u8 *data, int len, int index)
{
	long val;

	switch (index) {
	case PEM_FAN_FAN1:
	case PEM_FAN_FAN2:
	case PEM_FAN_FAN3:
		val = data[index] * 100;
		break;
	default:
		WARN_ON_ONCE(1);
		val = 0;
	}
	return val;
}

/*
 * Show boolean, either a fault or an alarm.
 * .nr points to the register, .index is the bit mask to check
 */
static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da,
			     char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
	struct pem_data *data = pem_update_device(dev);
	u8 status;

	if (IS_ERR(data))
		return PTR_ERR(data);

	status = data->data_string[attr->nr] & attr->index;
	return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
}

static ssize_t pem_data_show(struct device *dev, struct device_attribute *da,
			     char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
	struct pem_data *data = pem_update_device(dev);
	long value;

	if (IS_ERR(data))
		return PTR_ERR(data);

	value = pem_get_data(data->data_string, sizeof(data->data_string),
			     attr->index);

	return snprintf(buf, PAGE_SIZE, "%ld\n", value);
}

static ssize_t pem_input_show(struct device *dev, struct device_attribute *da,
			      char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
	struct pem_data *data = pem_update_device(dev);
	long value;

	if (IS_ERR(data))
		return PTR_ERR(data);

	value = pem_get_input(data->input_string, sizeof(data->input_string),
			      attr->index);

	return snprintf(buf, PAGE_SIZE, "%ld\n", value);
}

static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da,
			    char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
	struct pem_data *data = pem_update_device(dev);
	long value;

	if (IS_ERR(data))
		return PTR_ERR(data);

	value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
			    attr->index);

	return snprintf(buf, PAGE_SIZE, "%ld\n", value);
}

/* Voltages */
static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB);
static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1,
			       ALRM1_VOUT_OUT_LIMIT);
static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
			       ALRM1_OV_VOLT_SHUTDOWN);
static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE);
static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1,
			       ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);

/* Currents */
static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT);
static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1,
			       ALRM1_VIN_OVERCURRENT);

/* Power */
static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB);
static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1,
			       ALRM1_POWER_LIMIT);

/* Fans */
static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1);
static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2);
static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3);
static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2,
			       ALRM2_FAN_FAULT);

/* Temperatures */
static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP);
static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX);
static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT);
static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1,
			       ALRM1_TEMP_WARNING);
static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
			       ALRM1_TEMP_SHUTDOWN);
static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2,
			       ALRM2_TEMP_FAULT);

static struct attribute *pem_attributes[] = {
	&sensor_dev_attr_in1_input.dev_attr.attr,
	&sensor_dev_attr_in1_alarm.dev_attr.attr,
	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_in2_alarm.dev_attr.attr,

	&sensor_dev_attr_curr1_alarm.dev_attr.attr,

	&sensor_dev_attr_power1_alarm.dev_attr.attr,

	&sensor_dev_attr_fan1_alarm.dev_attr.attr,

	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_crit.dev_attr.attr,
	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_fault.dev_attr.attr,

	NULL,
};

static const struct attribute_group pem_group = {
	.attrs = pem_attributes,
};

static struct attribute *pem_input_attributes[] = {
	&sensor_dev_attr_in2_input.dev_attr.attr,
	&sensor_dev_attr_curr1_input.dev_attr.attr,
	&sensor_dev_attr_power1_input.dev_attr.attr,
	NULL
};

static const struct attribute_group pem_input_group = {
	.attrs = pem_input_attributes,
};

static struct attribute *pem_fan_attributes[] = {
	&sensor_dev_attr_fan1_input.dev_attr.attr,
	&sensor_dev_attr_fan2_input.dev_attr.attr,
	&sensor_dev_attr_fan3_input.dev_attr.attr,
	NULL
};

static const struct attribute_group pem_fan_group = {
	.attrs = pem_fan_attributes,
};

static int pem_probe(struct i2c_client *client,
		     const struct i2c_device_id *id)
{
	struct i2c_adapter *adapter = client->adapter;
	struct device *dev = &client->dev;
	struct device *hwmon_dev;
	struct pem_data *data;
	int ret, idx = 0;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
				     | I2C_FUNC_SMBUS_WRITE_BYTE))
		return -ENODEV;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->client = client;
	mutex_init(&data->update_lock);

	/*
	 * We use the next two commands to determine if the device is really
	 * there.
	 */
	ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
			     data->firmware_rev, sizeof(data->firmware_rev));
	if (ret < 0)
		return ret;

	ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
	if (ret < 0)
		return ret;

	dev_info(dev, "Firmware revision %d.%d.%d\n",
		 data->firmware_rev[0], data->firmware_rev[1],
		 data->firmware_rev[2]);

	/* sysfs hooks */
	data->groups[idx++] = &pem_group;

	/*
	 * Check if input readings are supported.
	 * This is the case if we can read input data,
	 * and if the returned data is not all zeros.
	 * Note that input alarms are always supported.
	 */
	ret = pem_read_block(client, PEM_READ_INPUT_STRING,
			     data->input_string,
			     sizeof(data->input_string) - 1);
	if (!ret && (data->input_string[0] || data->input_string[1] ||
		     data->input_string[2]))
		data->input_length = sizeof(data->input_string) - 1;
	else if (ret < 0) {
		/* Input string is one byte longer for some devices */
		ret = pem_read_block(client, PEM_READ_INPUT_STRING,
				    data->input_string,
				    sizeof(data->input_string));
		if (!ret && (data->input_string[0] || data->input_string[1] ||
			    data->input_string[2] || data->input_string[3]))
			data->input_length = sizeof(data->input_string);
	}

	if (data->input_length)
		data->groups[idx++] = &pem_input_group;

	/*
	 * Check if fan speed readings are supported.
	 * This is the case if we can read fan speed data,
	 * and if the returned data is not all zeros.
	 * Note that the fan alarm is always supported.
	 */
	ret = pem_read_block(client, PEM_READ_FAN_SPEED,
			     data->fan_speed,
			     sizeof(data->fan_speed));
	if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
		     data->fan_speed[2] || data->fan_speed[3])) {
		data->fans_supported = true;
		data->groups[idx++] = &pem_fan_group;
	}

	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
							   data, data->groups);
	return PTR_ERR_OR_ZERO(hwmon_dev);
}

static const struct i2c_device_id pem_id[] = {
	{"lineage_pem", 0},
	{}
};
MODULE_DEVICE_TABLE(i2c, pem_id);

static struct i2c_driver pem_driver = {
	.driver = {
		   .name = "lineage_pem",
		   },
	.probe = pem_probe,
	.id_table = pem_id,
};

module_i2c_driver(pem_driver);

MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
MODULE_LICENSE("GPL");