summaryrefslogtreecommitdiffstats
path: root/drivers/hwmon/bt1-pvt.c
blob: 3e1d56585b91ad1075d3536132c2e6775dec2b11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
 *
 * Authors:
 *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
 *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
 *
 * Baikal-T1 Process, Voltage, Temperature sensor driver
 */

#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/limits.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/seqlock.h>
#include <linux/sysfs.h>
#include <linux/types.h>

#include "bt1-pvt.h"

/*
 * For the sake of the code simplification we created the sensors info table
 * with the sensor names, activation modes, threshold registers base address
 * and the thresholds bit fields.
 */
static const struct pvt_sensor_info pvt_info[] = {
	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
};

/*
 * The original translation formulae of the temperature (in degrees of Celsius)
 * to PVT data and vice-versa are following:
 * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
 *     1.7204e2,
 * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
 *     3.1020e-1*(N^1) - 4.838e1,
 * where T = [-48.380, 147.438]C and N = [0, 1023].
 * They must be accordingly altered to be suitable for the integer arithmetics.
 * The technique is called 'factor redistribution', which just makes sure the
 * multiplications and divisions are made so to have a result of the operations
 * within the integer numbers limit. In addition we need to translate the
 * formulae to accept millidegrees of Celsius. Here what they look like after
 * the alterations:
 * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
 *     17204e2) / 1e4,
 * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
 *     48380,
 * where T = [-48380, 147438] mC and N = [0, 1023].
 */
static const struct pvt_poly __maybe_unused poly_temp_to_N = {
	.total_divider = 10000,
	.terms = {
		{4, 18322, 10000, 10000},
		{3, 2343, 10000, 10},
		{2, 87018, 10000, 10},
		{1, 39269, 1000, 1},
		{0, 1720400, 1, 1}
	}
};

static const struct pvt_poly poly_N_to_temp = {
	.total_divider = 1,
	.terms = {
		{4, -16743, 1000, 1},
		{3, 81542, 1000, 1},
		{2, -182010, 1000, 1},
		{1, 310200, 1000, 1},
		{0, -48380, 1, 1}
	}
};

/*
 * Similar alterations are performed for the voltage conversion equations.
 * The original formulae are:
 * N = 1.8658e3*V - 1.1572e3,
 * V = (N + 1.1572e3) / 1.8658e3,
 * where V = [0.620, 1.168] V and N = [0, 1023].
 * After the optimization they looks as follows:
 * N = (18658e-3*V - 11572) / 10,
 * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
 */
static const struct pvt_poly __maybe_unused poly_volt_to_N = {
	.total_divider = 10,
	.terms = {
		{1, 18658, 1000, 1},
		{0, -11572, 1, 1}
	}
};

static const struct pvt_poly poly_N_to_volt = {
	.total_divider = 10,
	.terms = {
		{1, 100000, 18658, 1},
		{0, 115720000, 1, 18658}
	}
};

/*
 * Here is the polynomial calculation function, which performs the
 * redistributed terms calculations. It's pretty straightforward. We walk
 * over each degree term up to the free one, and perform the redistributed
 * multiplication of the term coefficient, its divider (as for the rationale
 * fraction representation), data power and the rational fraction divider
 * leftover. Then all of this is collected in a total sum variable, which
 * value is normalized by the total divider before being returned.
 */
static long pvt_calc_poly(const struct pvt_poly *poly, long data)
{
	const struct pvt_poly_term *term = poly->terms;
	long tmp, ret = 0;
	int deg;

	do {
		tmp = term->coef;
		for (deg = 0; deg < term->deg; ++deg)
			tmp = mult_frac(tmp, data, term->divider);
		ret += tmp / term->divider_leftover;
	} while ((term++)->deg);

	return ret / poly->total_divider;
}

static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
{
	u32 old;

	old = readl_relaxed(reg);
	writel((old & ~mask) | (data & mask), reg);

	return old & mask;
}

/*
 * Baikal-T1 PVT mode can be updated only when the controller is disabled.
 * So first we disable it, then set the new mode together with the controller
 * getting back enabled. The same concerns the temperature trim and
 * measurements timeout. If it is necessary the interface mutex is supposed
 * to be locked at the time the operations are performed.
 */
static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
{
	u32 old;

	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);

	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
		   mode | old);
}

static inline u32 pvt_calc_trim(long temp)
{
	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);

	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
}

static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
{
	u32 old;

	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);

	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
		   trim | old);
}

static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
{
	u32 old;

	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
	writel(tout, pvt->regs + PVT_TTIMEOUT);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
}

/*
 * This driver can optionally provide the hwmon alarms for each sensor the PVT
 * controller supports. The alarms functionality is made compile-time
 * configurable due to the hardware interface implementation peculiarity
 * described further in this comment. So in case if alarms are unnecessary in
 * your system design it's recommended to have them disabled to prevent the PVT
 * IRQs being periodically raised to get the data cache/alarms status up to
 * date.
 *
 * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
 * but is equipped with a dedicated control wrapper. It exposes the PVT
 * sub-block registers space via the APB3 bus. In addition the wrapper provides
 * a common interrupt vector of the sensors conversion completion events and
 * threshold value alarms. Alas the wrapper interface hasn't been fully thought
 * through. There is only one sensor can be activated at a time, for which the
 * thresholds comparator is enabled right after the data conversion is
 * completed. Due to this if alarms need to be implemented for all available
 * sensors we can't just set the thresholds and enable the interrupts. We need
 * to enable the sensors one after another and let the controller to detect
 * the alarms by itself at each conversion. This also makes pointless to handle
 * the alarms interrupts, since in occasion they happen synchronously with
 * data conversion completion. The best driver design would be to have the
 * completion interrupts enabled only and keep the converted value in the
 * driver data cache. This solution is implemented if hwmon alarms are enabled
 * in this driver. In case if the alarms are disabled, the conversion is
 * performed on demand at the time a sensors input file is read.
 */

#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)

#define pvt_hard_isr NULL

static irqreturn_t pvt_soft_isr(int irq, void *data)
{
	const struct pvt_sensor_info *info;
	struct pvt_hwmon *pvt = data;
	struct pvt_cache *cache;
	u32 val, thres_sts, old;

	/*
	 * DVALID bit will be cleared by reading the data. We need to save the
	 * status before the next conversion happens. Threshold events will be
	 * handled a bit later.
	 */
	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);

	/*
	 * Then lets recharge the PVT interface with the next sampling mode.
	 * Lock the interface mutex to serialize trim, timeouts and alarm
	 * thresholds settings.
	 */
	cache = &pvt->cache[pvt->sensor];
	info = &pvt_info[pvt->sensor];
	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
		      PVT_SENSOR_FIRST : (pvt->sensor + 1);

	/*
	 * For some reason we have to mask the interrupt before changing the
	 * mode, otherwise sometimes the temperature mode doesn't get
	 * activated even though the actual mode in the ctrl register
	 * corresponds to one. Then we read the data. By doing so we also
	 * recharge the data conversion. After this the mode corresponding
	 * to the next sensor in the row is set. Finally we enable the
	 * interrupts back.
	 */
	mutex_lock(&pvt->iface_mtx);

	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
			 PVT_INTR_DVALID);

	val = readl(pvt->regs + PVT_DATA);

	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);

	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);

	mutex_unlock(&pvt->iface_mtx);

	/*
	 * We can now update the data cache with data just retrieved from the
	 * sensor. Lock write-seqlock to make sure the reader has a coherent
	 * data.
	 */
	write_seqlock(&cache->data_seqlock);

	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);

	write_sequnlock(&cache->data_seqlock);

	/*
	 * While PVT core is doing the next mode data conversion, we'll check
	 * whether the alarms were triggered for the current sensor. Note that
	 * according to the documentation only one threshold IRQ status can be
	 * set at a time, that's why if-else statement is utilized.
	 */
	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
				   info->channel);
	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
				   info->channel);
	}

	return IRQ_HANDLED;
}

static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
{
	return 0644;
}

static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
{
	return 0444;
}

static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			 long *val)
{
	struct pvt_cache *cache = &pvt->cache[type];
	unsigned int seq;
	u32 data;

	do {
		seq = read_seqbegin(&cache->data_seqlock);
		data = cache->data;
	} while (read_seqretry(&cache->data_seqlock, seq));

	if (type == PVT_TEMP)
		*val = pvt_calc_poly(&poly_N_to_temp, data);
	else
		*val = pvt_calc_poly(&poly_N_to_volt, data);

	return 0;
}

static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			  bool is_low, long *val)
{
	u32 data;

	/* No need in serialization, since it is just read from MMIO. */
	data = readl(pvt->regs + pvt_info[type].thres_base);

	if (is_low)
		data = FIELD_GET(PVT_THRES_LO_MASK, data);
	else
		data = FIELD_GET(PVT_THRES_HI_MASK, data);

	if (type == PVT_TEMP)
		*val = pvt_calc_poly(&poly_N_to_temp, data);
	else
		*val = pvt_calc_poly(&poly_N_to_volt, data);

	return 0;
}

static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			   bool is_low, long val)
{
	u32 data, limit, mask;
	int ret;

	if (type == PVT_TEMP) {
		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
		data = pvt_calc_poly(&poly_temp_to_N, val);
	} else {
		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
		data = pvt_calc_poly(&poly_volt_to_N, val);
	}

	/* Serialize limit update, since a part of the register is changed. */
	ret = mutex_lock_interruptible(&pvt->iface_mtx);
	if (ret)
		return ret;

	/* Make sure the upper and lower ranges don't intersect. */
	limit = readl(pvt->regs + pvt_info[type].thres_base);
	if (is_low) {
		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
		data = clamp_val(data, PVT_DATA_MIN, limit);
		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
		mask = PVT_THRES_LO_MASK;
	} else {
		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
		data = clamp_val(data, limit, PVT_DATA_MAX);
		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
		mask = PVT_THRES_HI_MASK;
	}

	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);

	mutex_unlock(&pvt->iface_mtx);

	return 0;
}

static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			  bool is_low, long *val)
{
	if (is_low)
		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
	else
		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);

	return 0;
}

static const struct hwmon_channel_info *pvt_channel_info[] = {
	HWMON_CHANNEL_INFO(chip,
			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
	HWMON_CHANNEL_INFO(temp,
			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
			   HWMON_T_OFFSET),
	HWMON_CHANNEL_INFO(in,
			   HWMON_I_INPUT | HWMON_I_LABEL |
			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
			   HWMON_I_INPUT | HWMON_I_LABEL |
			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
			   HWMON_I_INPUT | HWMON_I_LABEL |
			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
			   HWMON_I_INPUT | HWMON_I_LABEL |
			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
	NULL
};

#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */

static irqreturn_t pvt_hard_isr(int irq, void *data)
{
	struct pvt_hwmon *pvt = data;
	struct pvt_cache *cache;
	u32 val;

	/*
	 * Mask the DVALID interrupt so after exiting from the handler a
	 * repeated conversion wouldn't happen.
	 */
	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
		   PVT_INTR_DVALID);

	/*
	 * Nothing special for alarm-less driver. Just read the data, update
	 * the cache and notify a waiter of this event.
	 */
	val = readl(pvt->regs + PVT_DATA);
	if (!(val & PVT_DATA_VALID)) {
		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
		return IRQ_HANDLED;
	}

	cache = &pvt->cache[pvt->sensor];

	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));

	complete(&cache->conversion);

	return IRQ_HANDLED;
}

#define pvt_soft_isr NULL

static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
{
	return 0;
}

static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
{
	return 0;
}

static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			 long *val)
{
	struct pvt_cache *cache = &pvt->cache[type];
	unsigned long timeout;
	u32 data;
	int ret;

	/*
	 * Lock PVT conversion interface until data cache is updated. The
	 * data read procedure is following: set the requested PVT sensor
	 * mode, enable IRQ and conversion, wait until conversion is finished,
	 * then disable conversion and IRQ, and read the cached data.
	 */
	ret = mutex_lock_interruptible(&pvt->iface_mtx);
	if (ret)
		return ret;

	pvt->sensor = type;
	pvt_set_mode(pvt, pvt_info[type].mode);

	/*
	 * Unmask the DVALID interrupt and enable the sensors conversions.
	 * Do the reverse procedure when conversion is done.
	 */
	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);

	/*
	 * Wait with timeout since in case if the sensor is suddenly powered
	 * down the request won't be completed and the caller will hang up on
	 * this procedure until the power is back up again. Multiply the
	 * timeout by the factor of two to prevent a false timeout.
	 */
	timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout));
	ret = wait_for_completion_timeout(&cache->conversion, timeout);

	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
		   PVT_INTR_DVALID);

	data = READ_ONCE(cache->data);

	mutex_unlock(&pvt->iface_mtx);

	if (!ret)
		return -ETIMEDOUT;

	if (type == PVT_TEMP)
		*val = pvt_calc_poly(&poly_N_to_temp, data);
	else
		*val = pvt_calc_poly(&poly_N_to_volt, data);

	return 0;
}

static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			  bool is_low, long *val)
{
	return -EOPNOTSUPP;
}

static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			   bool is_low, long val)
{
	return -EOPNOTSUPP;
}

static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
			  bool is_low, long *val)
{
	return -EOPNOTSUPP;
}

static const struct hwmon_channel_info *pvt_channel_info[] = {
	HWMON_CHANNEL_INFO(chip,
			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
	HWMON_CHANNEL_INFO(temp,
			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
			   HWMON_T_OFFSET),
	HWMON_CHANNEL_INFO(in,
			   HWMON_I_INPUT | HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LABEL),
	NULL
};

#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */

static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
					      int ch)
{
	switch (type) {
	case hwmon_temp:
		if (ch < 0 || ch >= PVT_TEMP_CHS)
			return false;
		break;
	case hwmon_in:
		if (ch < 0 || ch >= PVT_VOLT_CHS)
			return false;
		break;
	default:
		break;
	}

	/* The rest of the types are independent from the channel number. */
	return true;
}

static umode_t pvt_hwmon_is_visible(const void *data,
				    enum hwmon_sensor_types type,
				    u32 attr, int ch)
{
	if (!pvt_hwmon_channel_is_valid(type, ch))
		return 0;

	switch (type) {
	case hwmon_chip:
		switch (attr) {
		case hwmon_chip_update_interval:
			return 0644;
		}
		break;
	case hwmon_temp:
		switch (attr) {
		case hwmon_temp_input:
		case hwmon_temp_type:
		case hwmon_temp_label:
			return 0444;
		case hwmon_temp_min:
		case hwmon_temp_max:
			return pvt_limit_is_visible(ch);
		case hwmon_temp_min_alarm:
		case hwmon_temp_max_alarm:
			return pvt_alarm_is_visible(ch);
		case hwmon_temp_offset:
			return 0644;
		}
		break;
	case hwmon_in:
		switch (attr) {
		case hwmon_in_input:
		case hwmon_in_label:
			return 0444;
		case hwmon_in_min:
		case hwmon_in_max:
			return pvt_limit_is_visible(PVT_VOLT + ch);
		case hwmon_in_min_alarm:
		case hwmon_in_max_alarm:
			return pvt_alarm_is_visible(PVT_VOLT + ch);
		}
		break;
	default:
		break;
	}

	return 0;
}

static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
{
	u32 data;

	data = readl(pvt->regs + PVT_CTRL);
	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;

	return 0;
}

static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
{
	u32 trim;
	int ret;

	/*
	 * Serialize trim update, since a part of the register is changed and
	 * the controller is supposed to be disabled during this operation.
	 */
	ret = mutex_lock_interruptible(&pvt->iface_mtx);
	if (ret)
		return ret;

	trim = pvt_calc_trim(val);
	pvt_set_trim(pvt, trim);

	mutex_unlock(&pvt->iface_mtx);

	return 0;
}

static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
{
	int ret;

	ret = mutex_lock_interruptible(&pvt->iface_mtx);
	if (ret)
		return ret;

	/* Return the result in msec as hwmon sysfs interface requires. */
	*val = ktime_to_ms(pvt->timeout);

	mutex_unlock(&pvt->iface_mtx);

	return 0;
}

static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
{
	unsigned long rate;
	ktime_t kt, cache;
	u32 data;
	int ret;

	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
	if (!rate)
		return -ENODEV;

	/*
	 * If alarms are enabled, the requested timeout must be divided
	 * between all available sensors to have the requested delay
	 * applicable to each individual sensor.
	 */
	cache = kt = ms_to_ktime(val);
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
	kt = ktime_divns(kt, PVT_SENSORS_NUM);
#endif

	/*
	 * Subtract a constant lag, which always persists due to the limited
	 * PVT sampling rate. Make sure the timeout is not negative.
	 */
	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
	if (ktime_to_ns(kt) < 0)
		kt = ktime_set(0, 0);

	/*
	 * Finally recalculate the timeout in terms of the reference clock
	 * period.
	 */
	data = ktime_divns(kt * rate, NSEC_PER_SEC);

	/*
	 * Update the measurements delay, but lock the interface first, since
	 * we have to disable PVT in order to have the new delay actually
	 * updated.
	 */
	ret = mutex_lock_interruptible(&pvt->iface_mtx);
	if (ret)
		return ret;

	pvt_set_tout(pvt, data);
	pvt->timeout = cache;

	mutex_unlock(&pvt->iface_mtx);

	return 0;
}

static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
			  u32 attr, int ch, long *val)
{
	struct pvt_hwmon *pvt = dev_get_drvdata(dev);

	if (!pvt_hwmon_channel_is_valid(type, ch))
		return -EINVAL;

	switch (type) {
	case hwmon_chip:
		switch (attr) {
		case hwmon_chip_update_interval:
			return pvt_read_timeout(pvt, val);
		}
		break;
	case hwmon_temp:
		switch (attr) {
		case hwmon_temp_input:
			return pvt_read_data(pvt, ch, val);
		case hwmon_temp_type:
			*val = 1;
			return 0;
		case hwmon_temp_min:
			return pvt_read_limit(pvt, ch, true, val);
		case hwmon_temp_max:
			return pvt_read_limit(pvt, ch, false, val);
		case hwmon_temp_min_alarm:
			return pvt_read_alarm(pvt, ch, true, val);
		case hwmon_temp_max_alarm:
			return pvt_read_alarm(pvt, ch, false, val);
		case hwmon_temp_offset:
			return pvt_read_trim(pvt, val);
		}
		break;
	case hwmon_in:
		switch (attr) {
		case hwmon_in_input:
			return pvt_read_data(pvt, PVT_VOLT + ch, val);
		case hwmon_in_min:
			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
		case hwmon_in_max:
			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
		case hwmon_in_min_alarm:
			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
		case hwmon_in_max_alarm:
			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
		}
		break;
	default:
		break;
	}

	return -EOPNOTSUPP;
}

static int pvt_hwmon_read_string(struct device *dev,
				 enum hwmon_sensor_types type,
				 u32 attr, int ch, const char **str)
{
	if (!pvt_hwmon_channel_is_valid(type, ch))
		return -EINVAL;

	switch (type) {
	case hwmon_temp:
		switch (attr) {
		case hwmon_temp_label:
			*str = pvt_info[ch].label;
			return 0;
		}
		break;
	case hwmon_in:
		switch (attr) {
		case hwmon_in_label:
			*str = pvt_info[PVT_VOLT + ch].label;
			return 0;
		}
		break;
	default:
		break;
	}

	return -EOPNOTSUPP;
}

static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
			   u32 attr, int ch, long val)
{
	struct pvt_hwmon *pvt = dev_get_drvdata(dev);

	if (!pvt_hwmon_channel_is_valid(type, ch))
		return -EINVAL;

	switch (type) {
	case hwmon_chip:
		switch (attr) {
		case hwmon_chip_update_interval:
			return pvt_write_timeout(pvt, val);
		}
		break;
	case hwmon_temp:
		switch (attr) {
		case hwmon_temp_min:
			return pvt_write_limit(pvt, ch, true, val);
		case hwmon_temp_max:
			return pvt_write_limit(pvt, ch, false, val);
		case hwmon_temp_offset:
			return pvt_write_trim(pvt, val);
		}
		break;
	case hwmon_in:
		switch (attr) {
		case hwmon_in_min:
			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
		case hwmon_in_max:
			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
		}
		break;
	default:
		break;
	}

	return -EOPNOTSUPP;
}

static const struct hwmon_ops pvt_hwmon_ops = {
	.is_visible = pvt_hwmon_is_visible,
	.read = pvt_hwmon_read,
	.read_string = pvt_hwmon_read_string,
	.write = pvt_hwmon_write
};

static const struct hwmon_chip_info pvt_hwmon_info = {
	.ops = &pvt_hwmon_ops,
	.info = pvt_channel_info
};

static void pvt_clear_data(void *data)
{
	struct pvt_hwmon *pvt = data;
#if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
	int idx;

	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
		complete_all(&pvt->cache[idx].conversion);
#endif

	mutex_destroy(&pvt->iface_mtx);
}

static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct pvt_hwmon *pvt;
	int ret, idx;

	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
	if (!pvt)
		return ERR_PTR(-ENOMEM);

	ret = devm_add_action(dev, pvt_clear_data, pvt);
	if (ret) {
		dev_err(dev, "Can't add PVT data clear action\n");
		return ERR_PTR(ret);
	}

	pvt->dev = dev;
	pvt->sensor = PVT_SENSOR_FIRST;
	mutex_init(&pvt->iface_mtx);

#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
		seqlock_init(&pvt->cache[idx].data_seqlock);
#else
	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
		init_completion(&pvt->cache[idx].conversion);
#endif

	return pvt;
}

static int pvt_request_regs(struct pvt_hwmon *pvt)
{
	struct platform_device *pdev = to_platform_device(pvt->dev);
	struct resource *res;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
		return -EINVAL;
	}

	pvt->regs = devm_ioremap_resource(pvt->dev, res);
	if (IS_ERR(pvt->regs)) {
		dev_err(pvt->dev, "Couldn't map PVT registers\n");
		return PTR_ERR(pvt->regs);
	}

	return 0;
}

static void pvt_disable_clks(void *data)
{
	struct pvt_hwmon *pvt = data;

	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
}

static int pvt_request_clks(struct pvt_hwmon *pvt)
{
	int ret;

	pvt->clks[PVT_CLOCK_APB].id = "pclk";
	pvt->clks[PVT_CLOCK_REF].id = "ref";

	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
	if (ret) {
		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
		return ret;
	}

	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
	if (ret) {
		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
		return ret;
	}

	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
	if (ret) {
		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
		return ret;
	}

	return 0;
}

static int pvt_check_pwr(struct pvt_hwmon *pvt)
{
	unsigned long tout;
	int ret = 0;
	u32 data;

	/*
	 * Test out the sensor conversion functionality. If it is not done on
	 * time then the domain must have been unpowered and we won't be able
	 * to use the device later in this driver.
	 * Note If the power source is lost during the normal driver work the
	 * data read procedure will either return -ETIMEDOUT (for the
	 * alarm-less driver configuration) or just stop the repeated
	 * conversion. In the later case alas we won't be able to detect the
	 * problem.
	 */
	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
	pvt_set_tout(pvt, 0);
	readl(pvt->regs + PVT_DATA);

	tout = PVT_TOUT_MIN / NSEC_PER_USEC;
	usleep_range(tout, 2 * tout);

	data = readl(pvt->regs + PVT_DATA);
	if (!(data & PVT_DATA_VALID)) {
		ret = -ENODEV;
		dev_err(pvt->dev, "Sensor is powered down\n");
	}

	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);

	return ret;
}

static int pvt_init_iface(struct pvt_hwmon *pvt)
{
	unsigned long rate;
	u32 trim, temp;

	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
	if (!rate) {
		dev_err(pvt->dev, "Invalid reference clock rate\n");
		return -ENODEV;
	}

	/*
	 * Make sure all interrupts and controller are disabled so not to
	 * accidentally have ISR executed before the driver data is fully
	 * initialized. Clear the IRQ status as well.
	 */
	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
	readl(pvt->regs + PVT_CLR_INTR);
	readl(pvt->regs + PVT_DATA);

	/* Setup default sensor mode, timeout and temperature trim. */
	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
	pvt_set_tout(pvt, PVT_TOUT_DEF);

	/*
	 * Preserve the current ref-clock based delay (Ttotal) between the
	 * sensors data samples in the driver data so not to recalculate it
	 * each time on the data requests and timeout reads. It consists of the
	 * delay introduced by the internal ref-clock timer (N / Fclk) and the
	 * constant timeout caused by each conversion latency (Tmin):
	 *   Ttotal = N / Fclk + Tmin
	 * If alarms are enabled the sensors are polled one after another and
	 * in order to get the next measurement of a particular sensor the
	 * caller will have to wait for at most until all the others are
	 * polled. In that case the formulae will look a bit different:
	 *   Ttotal = 5 * (N / Fclk + Tmin)
	 */
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
	pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0);
	pvt->timeout = ktime_divns(pvt->timeout, rate);
	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN);
#else
	pvt->timeout = ktime_set(PVT_TOUT_DEF, 0);
	pvt->timeout = ktime_divns(pvt->timeout, rate);
	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN);
#endif

	trim = PVT_TRIM_DEF;
	if (!of_property_read_u32(pvt->dev->of_node,
	     "baikal,pvt-temp-offset-millicelsius", &temp))
		trim = pvt_calc_trim(temp);

	pvt_set_trim(pvt, trim);

	return 0;
}

static int pvt_request_irq(struct pvt_hwmon *pvt)
{
	struct platform_device *pdev = to_platform_device(pvt->dev);
	int ret;

	pvt->irq = platform_get_irq(pdev, 0);
	if (pvt->irq < 0)
		return pvt->irq;

	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
					pvt_hard_isr, pvt_soft_isr,
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
					IRQF_SHARED | IRQF_TRIGGER_HIGH |
					IRQF_ONESHOT,
#else
					IRQF_SHARED | IRQF_TRIGGER_HIGH,
#endif
					"pvt", pvt);
	if (ret) {
		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
		return ret;
	}

	return 0;
}

static int pvt_create_hwmon(struct pvt_hwmon *pvt)
{
	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
		&pvt_hwmon_info, NULL);
	if (IS_ERR(pvt->hwmon)) {
		dev_err(pvt->dev, "Couldn't create hwmon device\n");
		return PTR_ERR(pvt->hwmon);
	}

	return 0;
}

#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)

static void pvt_disable_iface(void *data)
{
	struct pvt_hwmon *pvt = data;

	mutex_lock(&pvt->iface_mtx);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
		   PVT_INTR_DVALID);
	mutex_unlock(&pvt->iface_mtx);
}

static int pvt_enable_iface(struct pvt_hwmon *pvt)
{
	int ret;

	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
	if (ret) {
		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
		return ret;
	}

	/*
	 * Enable sensors data conversion and IRQ. We need to lock the
	 * interface mutex since hwmon has just been created and the
	 * corresponding sysfs files are accessible from user-space,
	 * which theoretically may cause races.
	 */
	mutex_lock(&pvt->iface_mtx);
	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
	mutex_unlock(&pvt->iface_mtx);

	return 0;
}

#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */

static int pvt_enable_iface(struct pvt_hwmon *pvt)
{
	return 0;
}

#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */

static int pvt_probe(struct platform_device *pdev)
{
	struct pvt_hwmon *pvt;
	int ret;

	pvt = pvt_create_data(pdev);
	if (IS_ERR(pvt))
		return PTR_ERR(pvt);

	ret = pvt_request_regs(pvt);
	if (ret)
		return ret;

	ret = pvt_request_clks(pvt);
	if (ret)
		return ret;

	ret = pvt_check_pwr(pvt);
	if (ret)
		return ret;

	ret = pvt_init_iface(pvt);
	if (ret)
		return ret;

	ret = pvt_request_irq(pvt);
	if (ret)
		return ret;

	ret = pvt_create_hwmon(pvt);
	if (ret)
		return ret;

	ret = pvt_enable_iface(pvt);
	if (ret)
		return ret;

	return 0;
}

static const struct of_device_id pvt_of_match[] = {
	{ .compatible = "baikal,bt1-pvt" },
	{ }
};
MODULE_DEVICE_TABLE(of, pvt_of_match);

static struct platform_driver pvt_driver = {
	.probe = pvt_probe,
	.driver = {
		.name = "bt1-pvt",
		.of_match_table = pvt_of_match
	}
};
module_platform_driver(pvt_driver);

MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
MODULE_DESCRIPTION("Baikal-T1 PVT driver");
MODULE_LICENSE("GPL v2");