summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/allwinner/sun8i-ce/sun8i-ce-core.c
blob: 5ab9ce9fb44d6394aaf175f4e3c5ce4a94dd70bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
// SPDX-License-Identifier: GPL-2.0
/*
 * sun8i-ce-core.c - hardware cryptographic offloader for
 * Allwinner H3/A64/H5/H2+/H6/R40 SoC
 *
 * Copyright (C) 2015-2019 Corentin Labbe <clabbe.montjoie@gmail.com>
 *
 * Core file which registers crypto algorithms supported by the CryptoEngine.
 *
 * You could find a link for the datasheet in Documentation/arm/sunxi.rst
 */
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <crypto/internal/skcipher.h>

#include "sun8i-ce.h"

/*
 * mod clock is lower on H3 than other SoC due to some DMA timeout occurring
 * with high value.
 * If you want to tune mod clock, loading driver and passing selftest is
 * insufficient, you need to test with some LUKS test (mount and write to it)
 */
static const struct ce_variant ce_h3_variant = {
	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
	},
	.op_mode = { CE_OP_ECB, CE_OP_CBC
	},
	.ce_clks = {
		{ "bus", 0, 200000000 },
		{ "mod", 50000000, 0 },
		},
	.esr = ESR_H3,
};

static const struct ce_variant ce_h5_variant = {
	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
	},
	.op_mode = { CE_OP_ECB, CE_OP_CBC
	},
	.ce_clks = {
		{ "bus", 0, 200000000 },
		{ "mod", 300000000, 0 },
		},
	.esr = ESR_H5,
};

static const struct ce_variant ce_h6_variant = {
	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
	},
	.op_mode = { CE_OP_ECB, CE_OP_CBC
	},
	.cipher_t_dlen_in_bytes = true,
	.ce_clks = {
		{ "bus", 0, 200000000 },
		{ "mod", 300000000, 0 },
		{ "ram", 0, 400000000 },
		},
	.esr = ESR_H6,
};

static const struct ce_variant ce_a64_variant = {
	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
	},
	.op_mode = { CE_OP_ECB, CE_OP_CBC
	},
	.ce_clks = {
		{ "bus", 0, 200000000 },
		{ "mod", 300000000, 0 },
		},
	.esr = ESR_A64,
};

static const struct ce_variant ce_r40_variant = {
	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
	},
	.op_mode = { CE_OP_ECB, CE_OP_CBC
	},
	.ce_clks = {
		{ "bus", 0, 200000000 },
		{ "mod", 300000000, 0 },
		},
	.esr = ESR_R40,
};

/*
 * sun8i_ce_get_engine_number() get the next channel slot
 * This is a simple round-robin way of getting the next channel
 */
int sun8i_ce_get_engine_number(struct sun8i_ce_dev *ce)
{
	return atomic_inc_return(&ce->flow) % MAXFLOW;
}

int sun8i_ce_run_task(struct sun8i_ce_dev *ce, int flow, const char *name)
{
	u32 v;
	int err = 0;
	struct ce_task *cet = ce->chanlist[flow].tl;

#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
	ce->chanlist[flow].stat_req++;
#endif

	mutex_lock(&ce->mlock);

	v = readl(ce->base + CE_ICR);
	v |= 1 << flow;
	writel(v, ce->base + CE_ICR);

	reinit_completion(&ce->chanlist[flow].complete);
	writel(ce->chanlist[flow].t_phy, ce->base + CE_TDQ);

	ce->chanlist[flow].status = 0;
	/* Be sure all data is written before enabling the task */
	wmb();

	/* Only H6 needs to write a part of t_common_ctl along with "1", but since it is ignored
	 * on older SoCs, we have no reason to complicate things.
	 */
	v = 1 | ((le32_to_cpu(ce->chanlist[flow].tl->t_common_ctl) & 0x7F) << 8);
	writel(v, ce->base + CE_TLR);
	mutex_unlock(&ce->mlock);

	wait_for_completion_interruptible_timeout(&ce->chanlist[flow].complete,
			msecs_to_jiffies(ce->chanlist[flow].timeout));

	if (ce->chanlist[flow].status == 0) {
		dev_err(ce->dev, "DMA timeout for %s (tm=%d) on flow %d\n", name,
			ce->chanlist[flow].timeout, flow);
		err = -EFAULT;
	}
	/* No need to lock for this read, the channel is locked so
	 * nothing could modify the error value for this channel
	 */
	v = readl(ce->base + CE_ESR);
	switch (ce->variant->esr) {
	case ESR_H3:
		/* Sadly, the error bit is not per flow */
		if (v) {
			dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
			err = -EFAULT;
			print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
				       cet, sizeof(struct ce_task), false);
		}
		if (v & CE_ERR_ALGO_NOTSUP)
			dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
		if (v & CE_ERR_DATALEN)
			dev_err(ce->dev, "CE ERROR: data length error\n");
		if (v & CE_ERR_KEYSRAM)
			dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
		break;
	case ESR_A64:
	case ESR_H5:
	case ESR_R40:
		v >>= (flow * 4);
		v &= 0xF;
		if (v) {
			dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
			err = -EFAULT;
			print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
				       cet, sizeof(struct ce_task), false);
		}
		if (v & CE_ERR_ALGO_NOTSUP)
			dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
		if (v & CE_ERR_DATALEN)
			dev_err(ce->dev, "CE ERROR: data length error\n");
		if (v & CE_ERR_KEYSRAM)
			dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
		break;
	case ESR_H6:
		v >>= (flow * 8);
		v &= 0xFF;
		if (v) {
			dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
			err = -EFAULT;
			print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
				       cet, sizeof(struct ce_task), false);
		}
		if (v & CE_ERR_ALGO_NOTSUP)
			dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
		if (v & CE_ERR_DATALEN)
			dev_err(ce->dev, "CE ERROR: data length error\n");
		if (v & CE_ERR_KEYSRAM)
			dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
		if (v & CE_ERR_ADDR_INVALID)
			dev_err(ce->dev, "CE ERROR: address invalid\n");
		if (v & CE_ERR_KEYLADDER)
			dev_err(ce->dev, "CE ERROR: key ladder configuration error\n");
		break;
	}

	return err;
}

static irqreturn_t ce_irq_handler(int irq, void *data)
{
	struct sun8i_ce_dev *ce = (struct sun8i_ce_dev *)data;
	int flow = 0;
	u32 p;

	p = readl(ce->base + CE_ISR);
	for (flow = 0; flow < MAXFLOW; flow++) {
		if (p & (BIT(flow))) {
			writel(BIT(flow), ce->base + CE_ISR);
			ce->chanlist[flow].status = 1;
			complete(&ce->chanlist[flow].complete);
		}
	}

	return IRQ_HANDLED;
}

static struct sun8i_ce_alg_template ce_algs[] = {
{
	.type = CRYPTO_ALG_TYPE_SKCIPHER,
	.ce_algo_id = CE_ID_CIPHER_AES,
	.ce_blockmode = CE_ID_OP_CBC,
	.alg.skcipher = {
		.base = {
			.cra_name = "cbc(aes)",
			.cra_driver_name = "cbc-aes-sun8i-ce",
			.cra_priority = 400,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
				CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
				CRYPTO_ALG_NEED_FALLBACK,
			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
			.cra_module = THIS_MODULE,
			.cra_alignmask = 0xf,
			.cra_init = sun8i_ce_cipher_init,
			.cra_exit = sun8i_ce_cipher_exit,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.setkey		= sun8i_ce_aes_setkey,
		.encrypt	= sun8i_ce_skencrypt,
		.decrypt	= sun8i_ce_skdecrypt,
	}
},
{
	.type = CRYPTO_ALG_TYPE_SKCIPHER,
	.ce_algo_id = CE_ID_CIPHER_AES,
	.ce_blockmode = CE_ID_OP_ECB,
	.alg.skcipher = {
		.base = {
			.cra_name = "ecb(aes)",
			.cra_driver_name = "ecb-aes-sun8i-ce",
			.cra_priority = 400,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
				CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
				CRYPTO_ALG_NEED_FALLBACK,
			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
			.cra_module = THIS_MODULE,
			.cra_alignmask = 0xf,
			.cra_init = sun8i_ce_cipher_init,
			.cra_exit = sun8i_ce_cipher_exit,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.setkey		= sun8i_ce_aes_setkey,
		.encrypt	= sun8i_ce_skencrypt,
		.decrypt	= sun8i_ce_skdecrypt,
	}
},
{
	.type = CRYPTO_ALG_TYPE_SKCIPHER,
	.ce_algo_id = CE_ID_CIPHER_DES3,
	.ce_blockmode = CE_ID_OP_CBC,
	.alg.skcipher = {
		.base = {
			.cra_name = "cbc(des3_ede)",
			.cra_driver_name = "cbc-des3-sun8i-ce",
			.cra_priority = 400,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
				CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
				CRYPTO_ALG_NEED_FALLBACK,
			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
			.cra_module = THIS_MODULE,
			.cra_alignmask = 0xf,
			.cra_init = sun8i_ce_cipher_init,
			.cra_exit = sun8i_ce_cipher_exit,
		},
		.min_keysize	= DES3_EDE_KEY_SIZE,
		.max_keysize	= DES3_EDE_KEY_SIZE,
		.ivsize		= DES3_EDE_BLOCK_SIZE,
		.setkey		= sun8i_ce_des3_setkey,
		.encrypt	= sun8i_ce_skencrypt,
		.decrypt	= sun8i_ce_skdecrypt,
	}
},
{
	.type = CRYPTO_ALG_TYPE_SKCIPHER,
	.ce_algo_id = CE_ID_CIPHER_DES3,
	.ce_blockmode = CE_ID_OP_ECB,
	.alg.skcipher = {
		.base = {
			.cra_name = "ecb(des3_ede)",
			.cra_driver_name = "ecb-des3-sun8i-ce",
			.cra_priority = 400,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
				CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
				CRYPTO_ALG_NEED_FALLBACK,
			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
			.cra_module = THIS_MODULE,
			.cra_alignmask = 0xf,
			.cra_init = sun8i_ce_cipher_init,
			.cra_exit = sun8i_ce_cipher_exit,
		},
		.min_keysize	= DES3_EDE_KEY_SIZE,
		.max_keysize	= DES3_EDE_KEY_SIZE,
		.setkey		= sun8i_ce_des3_setkey,
		.encrypt	= sun8i_ce_skencrypt,
		.decrypt	= sun8i_ce_skdecrypt,
	}
},
};

#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
static int sun8i_ce_debugfs_show(struct seq_file *seq, void *v)
{
	struct sun8i_ce_dev *ce = seq->private;
	int i;

	for (i = 0; i < MAXFLOW; i++)
		seq_printf(seq, "Channel %d: nreq %lu\n", i, ce->chanlist[i].stat_req);

	for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
		if (!ce_algs[i].ce)
			continue;
		switch (ce_algs[i].type) {
		case CRYPTO_ALG_TYPE_SKCIPHER:
			seq_printf(seq, "%s %s %lu %lu\n",
				   ce_algs[i].alg.skcipher.base.cra_driver_name,
				   ce_algs[i].alg.skcipher.base.cra_name,
				   ce_algs[i].stat_req, ce_algs[i].stat_fb);
			break;
		}
	}
	return 0;
}

DEFINE_SHOW_ATTRIBUTE(sun8i_ce_debugfs);
#endif

static void sun8i_ce_free_chanlist(struct sun8i_ce_dev *ce, int i)
{
	while (i >= 0) {
		crypto_engine_exit(ce->chanlist[i].engine);
		if (ce->chanlist[i].tl)
			dma_free_coherent(ce->dev, sizeof(struct ce_task),
					  ce->chanlist[i].tl,
					  ce->chanlist[i].t_phy);
		i--;
	}
}

/*
 * Allocate the channel list structure
 */
static int sun8i_ce_allocate_chanlist(struct sun8i_ce_dev *ce)
{
	int i, err;

	ce->chanlist = devm_kcalloc(ce->dev, MAXFLOW,
				    sizeof(struct sun8i_ce_flow), GFP_KERNEL);
	if (!ce->chanlist)
		return -ENOMEM;

	for (i = 0; i < MAXFLOW; i++) {
		init_completion(&ce->chanlist[i].complete);

		ce->chanlist[i].engine = crypto_engine_alloc_init(ce->dev, true);
		if (!ce->chanlist[i].engine) {
			dev_err(ce->dev, "Cannot allocate engine\n");
			i--;
			err = -ENOMEM;
			goto error_engine;
		}
		err = crypto_engine_start(ce->chanlist[i].engine);
		if (err) {
			dev_err(ce->dev, "Cannot start engine\n");
			goto error_engine;
		}
		ce->chanlist[i].tl = dma_alloc_coherent(ce->dev,
							sizeof(struct ce_task),
							&ce->chanlist[i].t_phy,
							GFP_KERNEL);
		if (!ce->chanlist[i].tl) {
			dev_err(ce->dev, "Cannot get DMA memory for task %d\n",
				i);
			err = -ENOMEM;
			goto error_engine;
		}
	}
	return 0;
error_engine:
	sun8i_ce_free_chanlist(ce, i);
	return err;
}

/*
 * Power management strategy: The device is suspended unless a TFM exists for
 * one of the algorithms proposed by this driver.
 */
static int sun8i_ce_pm_suspend(struct device *dev)
{
	struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
	int i;

	reset_control_assert(ce->reset);
	for (i = 0; i < CE_MAX_CLOCKS; i++)
		clk_disable_unprepare(ce->ceclks[i]);
	return 0;
}

static int sun8i_ce_pm_resume(struct device *dev)
{
	struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
	int err, i;

	for (i = 0; i < CE_MAX_CLOCKS; i++) {
		if (!ce->variant->ce_clks[i].name)
			continue;
		err = clk_prepare_enable(ce->ceclks[i]);
		if (err) {
			dev_err(ce->dev, "Cannot prepare_enable %s\n",
				ce->variant->ce_clks[i].name);
			goto error;
		}
	}
	err = reset_control_deassert(ce->reset);
	if (err) {
		dev_err(ce->dev, "Cannot deassert reset control\n");
		goto error;
	}
	return 0;
error:
	sun8i_ce_pm_suspend(dev);
	return err;
}

static const struct dev_pm_ops sun8i_ce_pm_ops = {
	SET_RUNTIME_PM_OPS(sun8i_ce_pm_suspend, sun8i_ce_pm_resume, NULL)
};

static int sun8i_ce_pm_init(struct sun8i_ce_dev *ce)
{
	int err;

	pm_runtime_use_autosuspend(ce->dev);
	pm_runtime_set_autosuspend_delay(ce->dev, 2000);

	err = pm_runtime_set_suspended(ce->dev);
	if (err)
		return err;
	pm_runtime_enable(ce->dev);
	return err;
}

static void sun8i_ce_pm_exit(struct sun8i_ce_dev *ce)
{
	pm_runtime_disable(ce->dev);
}

static int sun8i_ce_get_clks(struct sun8i_ce_dev *ce)
{
	unsigned long cr;
	int err, i;

	for (i = 0; i < CE_MAX_CLOCKS; i++) {
		if (!ce->variant->ce_clks[i].name)
			continue;
		ce->ceclks[i] = devm_clk_get(ce->dev, ce->variant->ce_clks[i].name);
		if (IS_ERR(ce->ceclks[i])) {
			err = PTR_ERR(ce->ceclks[i]);
			dev_err(ce->dev, "Cannot get %s CE clock err=%d\n",
				ce->variant->ce_clks[i].name, err);
			return err;
		}
		cr = clk_get_rate(ce->ceclks[i]);
		if (!cr)
			return -EINVAL;
		if (ce->variant->ce_clks[i].freq > 0 &&
		    cr != ce->variant->ce_clks[i].freq) {
			dev_info(ce->dev, "Set %s clock to %lu (%lu Mhz) from %lu (%lu Mhz)\n",
				 ce->variant->ce_clks[i].name,
				 ce->variant->ce_clks[i].freq,
				 ce->variant->ce_clks[i].freq / 1000000,
				 cr, cr / 1000000);
			err = clk_set_rate(ce->ceclks[i], ce->variant->ce_clks[i].freq);
			if (err)
				dev_err(ce->dev, "Fail to set %s clk speed to %lu hz\n",
					ce->variant->ce_clks[i].name,
					ce->variant->ce_clks[i].freq);
		}
		if (ce->variant->ce_clks[i].max_freq > 0 &&
		    cr > ce->variant->ce_clks[i].max_freq)
			dev_warn(ce->dev, "Frequency for %s (%lu hz) is higher than datasheet's recommendation (%lu hz)",
				 ce->variant->ce_clks[i].name, cr,
				 ce->variant->ce_clks[i].max_freq);
	}
	return 0;
}

static int sun8i_ce_register_algs(struct sun8i_ce_dev *ce)
{
	int ce_method, err, id, i;

	for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
		ce_algs[i].ce = ce;
		switch (ce_algs[i].type) {
		case CRYPTO_ALG_TYPE_SKCIPHER:
			id = ce_algs[i].ce_algo_id;
			ce_method = ce->variant->alg_cipher[id];
			if (ce_method == CE_ID_NOTSUPP) {
				dev_dbg(ce->dev,
					"DEBUG: Algo of %s not supported\n",
					ce_algs[i].alg.skcipher.base.cra_name);
				ce_algs[i].ce = NULL;
				break;
			}
			id = ce_algs[i].ce_blockmode;
			ce_method = ce->variant->op_mode[id];
			if (ce_method == CE_ID_NOTSUPP) {
				dev_dbg(ce->dev, "DEBUG: Blockmode of %s not supported\n",
					ce_algs[i].alg.skcipher.base.cra_name);
				ce_algs[i].ce = NULL;
				break;
			}
			dev_info(ce->dev, "Register %s\n",
				 ce_algs[i].alg.skcipher.base.cra_name);
			err = crypto_register_skcipher(&ce_algs[i].alg.skcipher);
			if (err) {
				dev_err(ce->dev, "ERROR: Fail to register %s\n",
					ce_algs[i].alg.skcipher.base.cra_name);
				ce_algs[i].ce = NULL;
				return err;
			}
			break;
		default:
			ce_algs[i].ce = NULL;
			dev_err(ce->dev, "ERROR: tried to register an unknown algo\n");
		}
	}
	return 0;
}

static void sun8i_ce_unregister_algs(struct sun8i_ce_dev *ce)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
		if (!ce_algs[i].ce)
			continue;
		switch (ce_algs[i].type) {
		case CRYPTO_ALG_TYPE_SKCIPHER:
			dev_info(ce->dev, "Unregister %d %s\n", i,
				 ce_algs[i].alg.skcipher.base.cra_name);
			crypto_unregister_skcipher(&ce_algs[i].alg.skcipher);
			break;
		}
	}
}

static int sun8i_ce_probe(struct platform_device *pdev)
{
	struct sun8i_ce_dev *ce;
	int err, irq;
	u32 v;

	ce = devm_kzalloc(&pdev->dev, sizeof(*ce), GFP_KERNEL);
	if (!ce)
		return -ENOMEM;

	ce->dev = &pdev->dev;
	platform_set_drvdata(pdev, ce);

	ce->variant = of_device_get_match_data(&pdev->dev);
	if (!ce->variant) {
		dev_err(&pdev->dev, "Missing Crypto Engine variant\n");
		return -EINVAL;
	}

	ce->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ce->base))
		return PTR_ERR(ce->base);

	err = sun8i_ce_get_clks(ce);
	if (err)
		return err;

	/* Get Non Secure IRQ */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	ce->reset = devm_reset_control_get(&pdev->dev, NULL);
	if (IS_ERR(ce->reset))
		return dev_err_probe(&pdev->dev, PTR_ERR(ce->reset),
				     "No reset control found\n");

	mutex_init(&ce->mlock);

	err = sun8i_ce_allocate_chanlist(ce);
	if (err)
		return err;

	err = sun8i_ce_pm_init(ce);
	if (err)
		goto error_pm;

	err = devm_request_irq(&pdev->dev, irq, ce_irq_handler, 0,
			       "sun8i-ce-ns", ce);
	if (err) {
		dev_err(ce->dev, "Cannot request CryptoEngine Non-secure IRQ (err=%d)\n", err);
		goto error_irq;
	}

	err = sun8i_ce_register_algs(ce);
	if (err)
		goto error_alg;

	err = pm_runtime_get_sync(ce->dev);
	if (err < 0)
		goto error_alg;

	v = readl(ce->base + CE_CTR);
	v >>= CE_DIE_ID_SHIFT;
	v &= CE_DIE_ID_MASK;
	dev_info(&pdev->dev, "CryptoEngine Die ID %x\n", v);

	pm_runtime_put_sync(ce->dev);

#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
	/* Ignore error of debugfs */
	ce->dbgfs_dir = debugfs_create_dir("sun8i-ce", NULL);
	ce->dbgfs_stats = debugfs_create_file("stats", 0444,
					      ce->dbgfs_dir, ce,
					      &sun8i_ce_debugfs_fops);
#endif

	return 0;
error_alg:
	sun8i_ce_unregister_algs(ce);
error_irq:
	sun8i_ce_pm_exit(ce);
error_pm:
	sun8i_ce_free_chanlist(ce, MAXFLOW - 1);
	return err;
}

static int sun8i_ce_remove(struct platform_device *pdev)
{
	struct sun8i_ce_dev *ce = platform_get_drvdata(pdev);

	sun8i_ce_unregister_algs(ce);

#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
	debugfs_remove_recursive(ce->dbgfs_dir);
#endif

	sun8i_ce_free_chanlist(ce, MAXFLOW - 1);

	sun8i_ce_pm_exit(ce);
	return 0;
}

static const struct of_device_id sun8i_ce_crypto_of_match_table[] = {
	{ .compatible = "allwinner,sun8i-h3-crypto",
	  .data = &ce_h3_variant },
	{ .compatible = "allwinner,sun8i-r40-crypto",
	  .data = &ce_r40_variant },
	{ .compatible = "allwinner,sun50i-a64-crypto",
	  .data = &ce_a64_variant },
	{ .compatible = "allwinner,sun50i-h5-crypto",
	  .data = &ce_h5_variant },
	{ .compatible = "allwinner,sun50i-h6-crypto",
	  .data = &ce_h6_variant },
	{}
};
MODULE_DEVICE_TABLE(of, sun8i_ce_crypto_of_match_table);

static struct platform_driver sun8i_ce_driver = {
	.probe		 = sun8i_ce_probe,
	.remove		 = sun8i_ce_remove,
	.driver		 = {
		.name		= "sun8i-ce",
		.pm		= &sun8i_ce_pm_ops,
		.of_match_table	= sun8i_ce_crypto_of_match_table,
	},
};

module_platform_driver(sun8i_ce_driver);

MODULE_DESCRIPTION("Allwinner Crypto Engine cryptographic offloader");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corentin Labbe <clabbe.montjoie@gmail.com>");