summaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/renesas-ostm.c
blob: 3d06ba66008c70294a9da6059e1d46ce8ddcaeec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// SPDX-License-Identifier: GPL-2.0
/*
 * Renesas Timer Support - OSTM
 *
 * Copyright (C) 2017 Renesas Electronics America, Inc.
 * Copyright (C) 2017 Chris Brandt
 */

#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/sched_clock.h>
#include <linux/slab.h>

#include "timer-of.h"

/*
 * The OSTM contains independent channels.
 * The first OSTM channel probed will be set up as a free running
 * clocksource. Additionally we will use this clocksource for the system
 * schedule timer sched_clock().
 *
 * The second (or more) channel probed will be set up as an interrupt
 * driven clock event.
 */

static void __iomem *system_clock;	/* For sched_clock() */

/* OSTM REGISTERS */
#define	OSTM_CMP		0x000	/* RW,32 */
#define	OSTM_CNT		0x004	/* R,32 */
#define	OSTM_TE			0x010	/* R,8 */
#define	OSTM_TS			0x014	/* W,8 */
#define	OSTM_TT			0x018	/* W,8 */
#define	OSTM_CTL		0x020	/* RW,8 */

#define	TE			0x01
#define	TS			0x01
#define	TT			0x01
#define	CTL_PERIODIC		0x00
#define	CTL_ONESHOT		0x02
#define	CTL_FREERUN		0x02

static void ostm_timer_stop(struct timer_of *to)
{
	if (readb(timer_of_base(to) + OSTM_TE) & TE) {
		writeb(TT, timer_of_base(to) + OSTM_TT);

		/*
		 * Read back the register simply to confirm the write operation
		 * has completed since I/O writes can sometimes get queued by
		 * the bus architecture.
		 */
		while (readb(timer_of_base(to) + OSTM_TE) & TE)
			;
	}
}

static int __init ostm_init_clksrc(struct timer_of *to)
{
	ostm_timer_stop(to);

	writel(0, timer_of_base(to) + OSTM_CMP);
	writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL);
	writeb(TS, timer_of_base(to) + OSTM_TS);

	return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT,
				     to->np->full_name, timer_of_rate(to), 300,
				     32, clocksource_mmio_readl_up);
}

static u64 notrace ostm_read_sched_clock(void)
{
	return readl(system_clock);
}

static void __init ostm_init_sched_clock(struct timer_of *to)
{
	system_clock = timer_of_base(to) + OSTM_CNT;
	sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to));
}

static int ostm_clock_event_next(unsigned long delta,
				 struct clock_event_device *ced)
{
	struct timer_of *to = to_timer_of(ced);

	ostm_timer_stop(to);

	writel(delta, timer_of_base(to) + OSTM_CMP);
	writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL);
	writeb(TS, timer_of_base(to) + OSTM_TS);

	return 0;
}

static int ostm_shutdown(struct clock_event_device *ced)
{
	struct timer_of *to = to_timer_of(ced);

	ostm_timer_stop(to);

	return 0;
}
static int ostm_set_periodic(struct clock_event_device *ced)
{
	struct timer_of *to = to_timer_of(ced);

	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
		ostm_timer_stop(to);

	writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP);
	writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL);
	writeb(TS, timer_of_base(to) + OSTM_TS);

	return 0;
}

static int ostm_set_oneshot(struct clock_event_device *ced)
{
	struct timer_of *to = to_timer_of(ced);

	ostm_timer_stop(to);

	return 0;
}

static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
{
	struct clock_event_device *ced = dev_id;

	if (clockevent_state_oneshot(ced))
		ostm_timer_stop(to_timer_of(ced));

	/* notify clockevent layer */
	if (ced->event_handler)
		ced->event_handler(ced);

	return IRQ_HANDLED;
}

static int __init ostm_init_clkevt(struct timer_of *to)
{
	struct clock_event_device *ced = &to->clkevt;

	ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
	ced->set_state_shutdown = ostm_shutdown;
	ced->set_state_periodic = ostm_set_periodic;
	ced->set_state_oneshot = ostm_set_oneshot;
	ced->set_next_event = ostm_clock_event_next;
	ced->shift = 32;
	ced->rating = 300;
	ced->cpumask = cpumask_of(0);
	clockevents_config_and_register(ced, timer_of_rate(to), 0xf,
					0xffffffff);

	return 0;
}

static int __init ostm_init(struct device_node *np)
{
	struct timer_of *to;
	int ret;

	to = kzalloc(sizeof(*to), GFP_KERNEL);
	if (!to)
		return -ENOMEM;

	to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK;
	if (system_clock) {
		/*
		 * clock sources don't use interrupts, clock events do
		 */
		to->flags |= TIMER_OF_IRQ;
		to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL;
		to->of_irq.handler = ostm_timer_interrupt;
	}

	ret = timer_of_init(np, to);
	if (ret)
		goto err_free;

	/*
	 * First probed device will be used as system clocksource. Any
	 * additional devices will be used as clock events.
	 */
	if (!system_clock) {
		ret = ostm_init_clksrc(to);
		if (ret)
			goto err_cleanup;

		ostm_init_sched_clock(to);
		pr_info("%pOF: used for clocksource\n", np);
	} else {
		ret = ostm_init_clkevt(to);
		if (ret)
			goto err_cleanup;

		pr_info("%pOF: used for clock events\n", np);
	}

	return 0;

err_cleanup:
	timer_of_cleanup(to);
err_free:
	kfree(to);
	return ret;
}

TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);