summaryrefslogtreecommitdiffstats
path: root/drivers/base/arch_topology.c
blob: edfcf8d982e4186a80a3bf76ab626976bb86d200 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// SPDX-License-Identifier: GPL-2.0
/*
 * Arch specific cpu topology information
 *
 * Copyright (C) 2016, ARM Ltd.
 * Written by: Juri Lelli, ARM Ltd.
 */

#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/sched/topology.h>
#include <linux/cpuset.h>

DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;

void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
			 unsigned long max_freq)
{
	unsigned long scale;
	int i;

	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;

	for_each_cpu(i, cpus)
		per_cpu(freq_scale, i) = scale;
}

static DEFINE_MUTEX(cpu_scale_mutex);
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;

void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
	per_cpu(cpu_scale, cpu) = capacity;
}

static ssize_t cpu_capacity_show(struct device *dev,
				 struct device_attribute *attr,
				 char *buf)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);

	return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
}

static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);

static ssize_t cpu_capacity_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf,
				  size_t count)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);
	int this_cpu = cpu->dev.id;
	int i;
	unsigned long new_capacity;
	ssize_t ret;

	if (!count)
		return 0;

	ret = kstrtoul(buf, 0, &new_capacity);
	if (ret)
		return ret;
	if (new_capacity > SCHED_CAPACITY_SCALE)
		return -EINVAL;

	mutex_lock(&cpu_scale_mutex);
	for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
		topology_set_cpu_scale(i, new_capacity);
	mutex_unlock(&cpu_scale_mutex);

	schedule_work(&update_topology_flags_work);

	return count;
}

static DEVICE_ATTR_RW(cpu_capacity);

static int register_cpu_capacity_sysctl(void)
{
	int i;
	struct device *cpu;

	for_each_possible_cpu(i) {
		cpu = get_cpu_device(i);
		if (!cpu) {
			pr_err("%s: too early to get CPU%d device!\n",
			       __func__, i);
			continue;
		}
		device_create_file(cpu, &dev_attr_cpu_capacity);
	}

	return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);

static int update_topology;

int topology_update_cpu_topology(void)
{
	return update_topology;
}

/*
 * Updating the sched_domains can't be done directly from cpufreq callbacks
 * due to locking, so queue the work for later.
 */
static void update_topology_flags_workfn(struct work_struct *work)
{
	update_topology = 1;
	rebuild_sched_domains();
	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
	update_topology = 0;
}

static u32 capacity_scale;
static u32 *raw_capacity;

static int free_raw_capacity(void)
{
	kfree(raw_capacity);
	raw_capacity = NULL;

	return 0;
}

void topology_normalize_cpu_scale(void)
{
	u64 capacity;
	int cpu;

	if (!raw_capacity)
		return;

	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
	mutex_lock(&cpu_scale_mutex);
	for_each_possible_cpu(cpu) {
		pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
			 cpu, raw_capacity[cpu]);
		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
			/ capacity_scale;
		topology_set_cpu_scale(cpu, capacity);
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
			cpu, topology_get_cpu_scale(NULL, cpu));
	}
	mutex_unlock(&cpu_scale_mutex);
}

bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
	static bool cap_parsing_failed;
	int ret;
	u32 cpu_capacity;

	if (cap_parsing_failed)
		return false;

	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
				   &cpu_capacity);
	if (!ret) {
		if (!raw_capacity) {
			raw_capacity = kcalloc(num_possible_cpus(),
					       sizeof(*raw_capacity),
					       GFP_KERNEL);
			if (!raw_capacity) {
				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
				cap_parsing_failed = true;
				return false;
			}
		}
		capacity_scale = max(cpu_capacity, capacity_scale);
		raw_capacity[cpu] = cpu_capacity;
		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
			cpu_node, raw_capacity[cpu]);
	} else {
		if (raw_capacity) {
			pr_err("cpu_capacity: missing %pOF raw capacity\n",
				cpu_node);
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		}
		cap_parsing_failed = true;
		free_raw_capacity();
	}

	return !ret;
}

#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);

static int
init_cpu_capacity_callback(struct notifier_block *nb,
			   unsigned long val,
			   void *data)
{
	struct cpufreq_policy *policy = data;
	int cpu;

	if (!raw_capacity)
		return 0;

	if (val != CPUFREQ_NOTIFY)
		return 0;

	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
		 cpumask_pr_args(policy->related_cpus),
		 cpumask_pr_args(cpus_to_visit));

	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);

	for_each_cpu(cpu, policy->related_cpus) {
		raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
				    policy->cpuinfo.max_freq / 1000UL;
		capacity_scale = max(raw_capacity[cpu], capacity_scale);
	}

	if (cpumask_empty(cpus_to_visit)) {
		topology_normalize_cpu_scale();
		schedule_work(&update_topology_flags_work);
		free_raw_capacity();
		pr_debug("cpu_capacity: parsing done\n");
		schedule_work(&parsing_done_work);
	}

	return 0;
}

static struct notifier_block init_cpu_capacity_notifier = {
	.notifier_call = init_cpu_capacity_callback,
};

static int __init register_cpufreq_notifier(void)
{
	int ret;

	/*
	 * on ACPI-based systems we need to use the default cpu capacity
	 * until we have the necessary code to parse the cpu capacity, so
	 * skip registering cpufreq notifier.
	 */
	if (!acpi_disabled || !raw_capacity)
		return -EINVAL;

	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
		return -ENOMEM;
	}

	cpumask_copy(cpus_to_visit, cpu_possible_mask);

	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
					CPUFREQ_POLICY_NOTIFIER);

	if (ret)
		free_cpumask_var(cpus_to_visit);

	return ret;
}
core_initcall(register_cpufreq_notifier);

static void parsing_done_workfn(struct work_struct *work)
{
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
	free_cpumask_var(cpus_to_visit);
}

#else
core_initcall(free_raw_capacity);
#endif