1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
|
/*
* Utility functions for x86 operand and address decoding
*
* Copyright (C) Intel Corporation 2017
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ratelimit.h>
#include <linux/mmu_context.h>
#include <asm/desc_defs.h>
#include <asm/desc.h>
#include <asm/inat.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <asm/ldt.h>
#include <asm/vm86.h>
#undef pr_fmt
#define pr_fmt(fmt) "insn: " fmt
enum reg_type {
REG_TYPE_RM = 0,
REG_TYPE_INDEX,
REG_TYPE_BASE,
};
/**
* is_string_insn() - Determine if instruction is a string instruction
* @insn: Instruction containing the opcode to inspect
*
* Returns:
*
* true if the instruction, determined by the opcode, is any of the
* string instructions as defined in the Intel Software Development manual.
* False otherwise.
*/
static bool is_string_insn(struct insn *insn)
{
insn_get_opcode(insn);
/* All string instructions have a 1-byte opcode. */
if (insn->opcode.nbytes != 1)
return false;
switch (insn->opcode.bytes[0]) {
case 0x6c ... 0x6f: /* INS, OUTS */
case 0xa4 ... 0xa7: /* MOVS, CMPS */
case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
return true;
default:
return false;
}
}
/**
* get_seg_reg_override_idx() - obtain segment register override index
* @insn: Valid instruction with segment override prefixes
*
* Inspect the instruction prefixes in @insn and find segment overrides, if any.
*
* Returns:
*
* A constant identifying the segment register to use, among CS, SS, DS,
* ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
* prefixes were found.
*
* -EINVAL in case of error.
*/
static int get_seg_reg_override_idx(struct insn *insn)
{
int idx = INAT_SEG_REG_DEFAULT;
int num_overrides = 0, i;
insn_get_prefixes(insn);
/* Look for any segment override prefixes. */
for (i = 0; i < insn->prefixes.nbytes; i++) {
insn_attr_t attr;
attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
switch (attr) {
case INAT_MAKE_PREFIX(INAT_PFX_CS):
idx = INAT_SEG_REG_CS;
num_overrides++;
break;
case INAT_MAKE_PREFIX(INAT_PFX_SS):
idx = INAT_SEG_REG_SS;
num_overrides++;
break;
case INAT_MAKE_PREFIX(INAT_PFX_DS):
idx = INAT_SEG_REG_DS;
num_overrides++;
break;
case INAT_MAKE_PREFIX(INAT_PFX_ES):
idx = INAT_SEG_REG_ES;
num_overrides++;
break;
case INAT_MAKE_PREFIX(INAT_PFX_FS):
idx = INAT_SEG_REG_FS;
num_overrides++;
break;
case INAT_MAKE_PREFIX(INAT_PFX_GS):
idx = INAT_SEG_REG_GS;
num_overrides++;
break;
/* No default action needed. */
}
}
/* More than one segment override prefix leads to undefined behavior. */
if (num_overrides > 1)
return -EINVAL;
return idx;
}
/**
* check_seg_overrides() - check if segment override prefixes are allowed
* @insn: Valid instruction with segment override prefixes
* @regoff: Operand offset, in pt_regs, for which the check is performed
*
* For a particular register used in register-indirect addressing, determine if
* segment override prefixes can be used. Specifically, no overrides are allowed
* for rDI if used with a string instruction.
*
* Returns:
*
* True if segment override prefixes can be used with the register indicated
* in @regoff. False if otherwise.
*/
static bool check_seg_overrides(struct insn *insn, int regoff)
{
if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
return false;
return true;
}
/**
* resolve_default_seg() - resolve default segment register index for an operand
* @insn: Instruction with opcode and address size. Must be valid.
* @regs: Register values as seen when entering kernel mode
* @off: Operand offset, in pt_regs, for which resolution is needed
*
* Resolve the default segment register index associated with the instruction
* operand register indicated by @off. Such index is resolved based on defaults
* described in the Intel Software Development Manual.
*
* Returns:
*
* If in protected mode, a constant identifying the segment register to use,
* among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
*
* -EINVAL in case of error.
*/
static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
{
if (user_64bit_mode(regs))
return INAT_SEG_REG_IGNORE;
/*
* Resolve the default segment register as described in Section 3.7.4
* of the Intel Software Development Manual Vol. 1:
*
* + DS for all references involving r[ABCD]X, and rSI.
* + If used in a string instruction, ES for rDI. Otherwise, DS.
* + AX, CX and DX are not valid register operands in 16-bit address
* encodings but are valid for 32-bit and 64-bit encodings.
* + -EDOM is reserved to identify for cases in which no register
* is used (i.e., displacement-only addressing). Use DS.
* + SS for rSP or rBP.
* + CS for rIP.
*/
switch (off) {
case offsetof(struct pt_regs, ax):
case offsetof(struct pt_regs, cx):
case offsetof(struct pt_regs, dx):
/* Need insn to verify address size. */
if (insn->addr_bytes == 2)
return -EINVAL;
/* fall through */
case -EDOM:
case offsetof(struct pt_regs, bx):
case offsetof(struct pt_regs, si):
return INAT_SEG_REG_DS;
case offsetof(struct pt_regs, di):
if (is_string_insn(insn))
return INAT_SEG_REG_ES;
return INAT_SEG_REG_DS;
case offsetof(struct pt_regs, bp):
case offsetof(struct pt_regs, sp):
return INAT_SEG_REG_SS;
case offsetof(struct pt_regs, ip):
return INAT_SEG_REG_CS;
default:
return -EINVAL;
}
}
/**
* resolve_seg_reg() - obtain segment register index
* @insn: Instruction with operands
* @regs: Register values as seen when entering kernel mode
* @regoff: Operand offset, in pt_regs, used to deterimine segment register
*
* Determine the segment register associated with the operands and, if
* applicable, prefixes and the instruction pointed by @insn.
*
* The segment register associated to an operand used in register-indirect
* addressing depends on:
*
* a) Whether running in long mode (in such a case segments are ignored, except
* if FS or GS are used).
*
* b) Whether segment override prefixes can be used. Certain instructions and
* registers do not allow override prefixes.
*
* c) Whether segment overrides prefixes are found in the instruction prefixes.
*
* d) If there are not segment override prefixes or they cannot be used, the
* default segment register associated with the operand register is used.
*
* The function checks first if segment override prefixes can be used with the
* operand indicated by @regoff. If allowed, obtain such overridden segment
* register index. Lastly, if not prefixes were found or cannot be used, resolve
* the segment register index to use based on the defaults described in the
* Intel documentation. In long mode, all segment register indexes will be
* ignored, except if overrides were found for FS or GS. All these operations
* are done using helper functions.
*
* The operand register, @regoff, is represented as the offset from the base of
* pt_regs.
*
* As stated, the main use of this function is to determine the segment register
* index based on the instruction, its operands and prefixes. Hence, @insn
* must be valid. However, if @regoff indicates rIP, we don't need to inspect
* @insn at all as in this case CS is used in all cases. This case is checked
* before proceeding further.
*
* Please note that this function does not return the value in the segment
* register (i.e., the segment selector) but our defined index. The segment
* selector needs to be obtained using get_segment_selector() and passing the
* segment register index resolved by this function.
*
* Returns:
*
* An index identifying the segment register to use, among CS, SS, DS,
* ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
*
* -EINVAL in case of error.
*/
static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
{
int idx;
/*
* In the unlikely event of having to resolve the segment register
* index for rIP, do it first. Segment override prefixes should not
* be used. Hence, it is not necessary to inspect the instruction,
* which may be invalid at this point.
*/
if (regoff == offsetof(struct pt_regs, ip)) {
if (user_64bit_mode(regs))
return INAT_SEG_REG_IGNORE;
else
return INAT_SEG_REG_CS;
}
if (!insn)
return -EINVAL;
if (!check_seg_overrides(insn, regoff))
return resolve_default_seg(insn, regs, regoff);
idx = get_seg_reg_override_idx(insn);
if (idx < 0)
return idx;
if (idx == INAT_SEG_REG_DEFAULT)
return resolve_default_seg(insn, regs, regoff);
/*
* In long mode, segment override prefixes are ignored, except for
* overrides for FS and GS.
*/
if (user_64bit_mode(regs)) {
if (idx != INAT_SEG_REG_FS &&
idx != INAT_SEG_REG_GS)
idx = INAT_SEG_REG_IGNORE;
}
return idx;
}
/**
* get_segment_selector() - obtain segment selector
* @regs: Register values as seen when entering kernel mode
* @seg_reg_idx: Segment register index to use
*
* Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
* registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
* kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
* from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
* registers. This done for only for completeness as in CONFIG_X86_64 segment
* registers are ignored.
*
* Returns:
*
* Value of the segment selector, including null when running in
* long mode.
*
* -EINVAL on error.
*/
static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
{
#ifdef CONFIG_X86_64
unsigned short sel;
switch (seg_reg_idx) {
case INAT_SEG_REG_IGNORE:
return 0;
case INAT_SEG_REG_CS:
return (unsigned short)(regs->cs & 0xffff);
case INAT_SEG_REG_SS:
return (unsigned short)(regs->ss & 0xffff);
case INAT_SEG_REG_DS:
savesegment(ds, sel);
return sel;
case INAT_SEG_REG_ES:
savesegment(es, sel);
return sel;
case INAT_SEG_REG_FS:
savesegment(fs, sel);
return sel;
case INAT_SEG_REG_GS:
savesegment(gs, sel);
return sel;
default:
return -EINVAL;
}
#else /* CONFIG_X86_32 */
struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
if (v8086_mode(regs)) {
switch (seg_reg_idx) {
case INAT_SEG_REG_CS:
return (unsigned short)(regs->cs & 0xffff);
case INAT_SEG_REG_SS:
return (unsigned short)(regs->ss & 0xffff);
case INAT_SEG_REG_DS:
return vm86regs->ds;
case INAT_SEG_REG_ES:
return vm86regs->es;
case INAT_SEG_REG_FS:
return vm86regs->fs;
case INAT_SEG_REG_GS:
return vm86regs->gs;
case INAT_SEG_REG_IGNORE:
/* fall through */
default:
return -EINVAL;
}
}
switch (seg_reg_idx) {
case INAT_SEG_REG_CS:
return (unsigned short)(regs->cs & 0xffff);
case INAT_SEG_REG_SS:
return (unsigned short)(regs->ss & 0xffff);
case INAT_SEG_REG_DS:
return (unsigned short)(regs->ds & 0xffff);
case INAT_SEG_REG_ES:
return (unsigned short)(regs->es & 0xffff);
case INAT_SEG_REG_FS:
return (unsigned short)(regs->fs & 0xffff);
case INAT_SEG_REG_GS:
/*
* GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
* The macro below takes care of both cases.
*/
return get_user_gs(regs);
case INAT_SEG_REG_IGNORE:
/* fall through */
default:
return -EINVAL;
}
#endif /* CONFIG_X86_64 */
}
static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
enum reg_type type)
{
int regno = 0;
static const int regoff[] = {
offsetof(struct pt_regs, ax),
offsetof(struct pt_regs, cx),
offsetof(struct pt_regs, dx),
offsetof(struct pt_regs, bx),
offsetof(struct pt_regs, sp),
offsetof(struct pt_regs, bp),
offsetof(struct pt_regs, si),
offsetof(struct pt_regs, di),
#ifdef CONFIG_X86_64
offsetof(struct pt_regs, r8),
offsetof(struct pt_regs, r9),
offsetof(struct pt_regs, r10),
offsetof(struct pt_regs, r11),
offsetof(struct pt_regs, r12),
offsetof(struct pt_regs, r13),
offsetof(struct pt_regs, r14),
offsetof(struct pt_regs, r15),
#endif
};
int nr_registers = ARRAY_SIZE(regoff);
/*
* Don't possibly decode a 32-bit instructions as
* reading a 64-bit-only register.
*/
if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
nr_registers -= 8;
switch (type) {
case REG_TYPE_RM:
regno = X86_MODRM_RM(insn->modrm.value);
/*
* ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
* follows the ModRM byte.
*/
if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
return -EDOM;
if (X86_REX_B(insn->rex_prefix.value))
regno += 8;
break;
case REG_TYPE_INDEX:
regno = X86_SIB_INDEX(insn->sib.value);
if (X86_REX_X(insn->rex_prefix.value))
regno += 8;
/*
* If ModRM.mod != 3 and SIB.index = 4 the scale*index
* portion of the address computation is null. This is
* true only if REX.X is 0. In such a case, the SIB index
* is used in the address computation.
*/
if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
return -EDOM;
break;
case REG_TYPE_BASE:
regno = X86_SIB_BASE(insn->sib.value);
/*
* If ModRM.mod is 0 and SIB.base == 5, the base of the
* register-indirect addressing is 0. In this case, a
* 32-bit displacement follows the SIB byte.
*/
if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
return -EDOM;
if (X86_REX_B(insn->rex_prefix.value))
regno += 8;
break;
default:
pr_err_ratelimited("invalid register type: %d\n", type);
return -EINVAL;
}
if (regno >= nr_registers) {
WARN_ONCE(1, "decoded an instruction with an invalid register");
return -EINVAL;
}
return regoff[regno];
}
/**
* get_reg_offset_16() - Obtain offset of register indicated by instruction
* @insn: Instruction containing ModRM byte
* @regs: Register values as seen when entering kernel mode
* @offs1: Offset of the first operand register
* @offs2: Offset of the second opeand register, if applicable
*
* Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
* in @insn. This function is to be used with 16-bit address encodings. The
* @offs1 and @offs2 will be written with the offset of the two registers
* indicated by the instruction. In cases where any of the registers is not
* referenced by the instruction, the value will be set to -EDOM.
*
* Returns:
*
* 0 on success, -EINVAL on error.
*/
static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
int *offs1, int *offs2)
{
/*
* 16-bit addressing can use one or two registers. Specifics of
* encodings are given in Table 2-1. "16-Bit Addressing Forms with the
* ModR/M Byte" of the Intel Software Development Manual.
*/
static const int regoff1[] = {
offsetof(struct pt_regs, bx),
offsetof(struct pt_regs, bx),
offsetof(struct pt_regs, bp),
offsetof(struct pt_regs, bp),
offsetof(struct pt_regs, si),
offsetof(struct pt_regs, di),
offsetof(struct pt_regs, bp),
offsetof(struct pt_regs, bx),
};
static const int regoff2[] = {
offsetof(struct pt_regs, si),
offsetof(struct pt_regs, di),
offsetof(struct pt_regs, si),
offsetof(struct pt_regs, di),
-EDOM,
-EDOM,
-EDOM,
-EDOM,
};
if (!offs1 || !offs2)
return -EINVAL;
/* Operand is a register, use the generic function. */
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
*offs1 = insn_get_modrm_rm_off(insn, regs);
*offs2 = -EDOM;
return 0;
}
*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
/*
* If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
* only addressing. This means that no registers are involved in
* computing the effective address. Thus, ensure that the first
* register offset is invalild. The second register offset is already
* invalid under the aforementioned conditions.
*/
if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
(X86_MODRM_RM(insn->modrm.value) == 6))
*offs1 = -EDOM;
return 0;
}
/**
* get_desc() - Obtain contents of a segment descriptor
* @out: Segment descriptor contents on success
* @sel: Segment selector
*
* Given a segment selector, obtain a pointer to the segment descriptor.
* Both global and local descriptor tables are supported.
*
* Returns:
*
* True on success, false on failure.
*
* NULL on error.
*/
static bool get_desc(struct desc_struct *out, unsigned short sel)
{
struct desc_ptr gdt_desc = {0, 0};
unsigned long desc_base;
#ifdef CONFIG_MODIFY_LDT_SYSCALL
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
bool success = false;
struct ldt_struct *ldt;
/* Bits [15:3] contain the index of the desired entry. */
sel >>= 3;
mutex_lock(¤t->active_mm->context.lock);
ldt = current->active_mm->context.ldt;
if (ldt && sel < ldt->nr_entries) {
*out = ldt->entries[sel];
success = true;
}
mutex_unlock(¤t->active_mm->context.lock);
return success;
}
#endif
native_store_gdt(&gdt_desc);
/*
* Segment descriptors have a size of 8 bytes. Thus, the index is
* multiplied by 8 to obtain the memory offset of the desired descriptor
* from the base of the GDT. As bits [15:3] of the segment selector
* contain the index, it can be regarded as multiplied by 8 already.
* All that remains is to clear bits [2:0].
*/
desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
if (desc_base > gdt_desc.size)
return false;
*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
return true;
}
/**
* insn_get_seg_base() - Obtain base address of segment descriptor.
* @regs: Register values as seen when entering kernel mode
* @seg_reg_idx: Index of the segment register pointing to seg descriptor
*
* Obtain the base address of the segment as indicated by the segment descriptor
* pointed by the segment selector. The segment selector is obtained from the
* input segment register index @seg_reg_idx.
*
* Returns:
*
* In protected mode, base address of the segment. Zero in long mode,
* except when FS or GS are used. In virtual-8086 mode, the segment
* selector shifted 4 bits to the right.
*
* -1L in case of error.
*/
unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
{
struct desc_struct desc;
short sel;
sel = get_segment_selector(regs, seg_reg_idx);
if (sel < 0)
return -1L;
if (v8086_mode(regs))
/*
* Base is simply the segment selector shifted 4
* bits to the right.
*/
return (unsigned long)(sel << 4);
if (user_64bit_mode(regs)) {
/*
* Only FS or GS will have a base address, the rest of
* the segments' bases are forced to 0.
*/
unsigned long base;
if (seg_reg_idx == INAT_SEG_REG_FS)
rdmsrl(MSR_FS_BASE, base);
else if (seg_reg_idx == INAT_SEG_REG_GS)
/*
* swapgs was called at the kernel entry point. Thus,
* MSR_KERNEL_GS_BASE will have the user-space GS base.
*/
rdmsrl(MSR_KERNEL_GS_BASE, base);
else
base = 0;
return base;
}
/* In protected mode the segment selector cannot be null. */
if (!sel)
return -1L;
if (!get_desc(&desc, sel))
return -1L;
return get_desc_base(&desc);
}
/**
* get_seg_limit() - Obtain the limit of a segment descriptor
* @regs: Register values as seen when entering kernel mode
* @seg_reg_idx: Index of the segment register pointing to seg descriptor
*
* Obtain the limit of the segment as indicated by the segment descriptor
* pointed by the segment selector. The segment selector is obtained from the
* input segment register index @seg_reg_idx.
*
* Returns:
*
* In protected mode, the limit of the segment descriptor in bytes.
* In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
* limit is returned as -1L to imply a limit-less segment.
*
* Zero is returned on error.
*/
static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
{
struct desc_struct desc;
unsigned long limit;
short sel;
sel = get_segment_selector(regs, seg_reg_idx);
if (sel < 0)
return 0;
if (user_64bit_mode(regs) || v8086_mode(regs))
return -1L;
if (!sel)
return 0;
if (!get_desc(&desc, sel))
return 0;
/*
* If the granularity bit is set, the limit is given in multiples
* of 4096. This also means that the 12 least significant bits are
* not tested when checking the segment limits. In practice,
* this means that the segment ends in (limit << 12) + 0xfff.
*/
limit = get_desc_limit(&desc);
if (desc.g)
limit = (limit << 12) + 0xfff;
return limit;
}
/**
* insn_get_code_seg_params() - Obtain code segment parameters
* @regs: Structure with register values as seen when entering kernel mode
*
* Obtain address and operand sizes of the code segment. It is obtained from the
* selector contained in the CS register in regs. In protected mode, the default
* address is determined by inspecting the L and D bits of the segment
* descriptor. In virtual-8086 mode, the default is always two bytes for both
* address and operand sizes.
*
* Returns:
*
* An int containing ORed-in default parameters on success.
*
* -EINVAL on error.
*/
int insn_get_code_seg_params(struct pt_regs *regs)
{
struct desc_struct desc;
short sel;
if (v8086_mode(regs))
/* Address and operand size are both 16-bit. */
return INSN_CODE_SEG_PARAMS(2, 2);
sel = get_segment_selector(regs, INAT_SEG_REG_CS);
if (sel < 0)
return sel;
if (!get_desc(&desc, sel))
return -EINVAL;
/*
* The most significant byte of the Type field of the segment descriptor
* determines whether a segment contains data or code. If this is a data
* segment, return error.
*/
if (!(desc.type & BIT(3)))
return -EINVAL;
switch ((desc.l << 1) | desc.d) {
case 0: /*
* Legacy mode. CS.L=0, CS.D=0. Address and operand size are
* both 16-bit.
*/
return INSN_CODE_SEG_PARAMS(2, 2);
case 1: /*
* Legacy mode. CS.L=0, CS.D=1. Address and operand size are
* both 32-bit.
*/
return INSN_CODE_SEG_PARAMS(4, 4);
case 2: /*
* IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
* operand size is 32-bit.
*/
return INSN_CODE_SEG_PARAMS(4, 8);
case 3: /* Invalid setting. CS.L=1, CS.D=1 */
/* fall through */
default:
return -EINVAL;
}
}
/**
* insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
* @insn: Instruction containing the ModRM byte
* @regs: Register values as seen when entering kernel mode
*
* Returns:
*
* The register indicated by the r/m part of the ModRM byte. The
* register is obtained as an offset from the base of pt_regs. In specific
* cases, the returned value can be -EDOM to indicate that the particular value
* of ModRM does not refer to a register and shall be ignored.
*/
int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
{
return get_reg_offset(insn, regs, REG_TYPE_RM);
}
/**
* get_seg_base_limit() - obtain base address and limit of a segment
* @insn: Instruction. Must be valid.
* @regs: Register values as seen when entering kernel mode
* @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
* @base: Obtained segment base
* @limit: Obtained segment limit
*
* Obtain the base address and limit of the segment associated with the operand
* @regoff and, if any or allowed, override prefixes in @insn. This function is
* different from insn_get_seg_base() as the latter does not resolve the segment
* associated with the instruction operand. If a limit is not needed (e.g.,
* when running in long mode), @limit can be NULL.
*
* Returns:
*
* 0 on success. @base and @limit will contain the base address and of the
* resolved segment, respectively.
*
* -EINVAL on error.
*/
static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
int regoff, unsigned long *base,
unsigned long *limit)
{
int seg_reg_idx;
if (!base)
return -EINVAL;
seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
if (seg_reg_idx < 0)
return seg_reg_idx;
*base = insn_get_seg_base(regs, seg_reg_idx);
if (*base == -1L)
return -EINVAL;
if (!limit)
return 0;
*limit = get_seg_limit(regs, seg_reg_idx);
if (!(*limit))
return -EINVAL;
return 0;
}
/**
* get_eff_addr_reg() - Obtain effective address from register operand
* @insn: Instruction. Must be valid.
* @regs: Register values as seen when entering kernel mode
* @regoff: Obtained operand offset, in pt_regs, with the effective address
* @eff_addr: Obtained effective address
*
* Obtain the effective address stored in the register operand as indicated by
* the ModRM byte. This function is to be used only with register addressing
* (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
* register operand, as an offset from the base of pt_regs, is saved in @regoff;
* such offset can then be used to resolve the segment associated with the
* operand. This function can be used with any of the supported address sizes
* in x86.
*
* Returns:
*
* 0 on success. @eff_addr will have the effective address stored in the
* operand indicated by ModRM. @regoff will have such operand as an offset from
* the base of pt_regs.
*
* -EINVAL on error.
*/
static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
int *regoff, long *eff_addr)
{
insn_get_modrm(insn);
if (!insn->modrm.nbytes)
return -EINVAL;
if (X86_MODRM_MOD(insn->modrm.value) != 3)
return -EINVAL;
*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
if (*regoff < 0)
return -EINVAL;
/* Ignore bytes that are outside the address size. */
if (insn->addr_bytes == 2)
*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
else if (insn->addr_bytes == 4)
*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
else /* 64-bit address */
*eff_addr = regs_get_register(regs, *regoff);
return 0;
}
/**
* get_eff_addr_modrm() - Obtain referenced effective address via ModRM
* @insn: Instruction. Must be valid.
* @regs: Register values as seen when entering kernel mode
* @regoff: Obtained operand offset, in pt_regs, associated with segment
* @eff_addr: Obtained effective address
*
* Obtain the effective address referenced by the ModRM byte of @insn. After
* identifying the registers involved in the register-indirect memory reference,
* its value is obtained from the operands in @regs. The computed address is
* stored @eff_addr. Also, the register operand that indicates the associated
* segment is stored in @regoff, this parameter can later be used to determine
* such segment.
*
* Returns:
*
* 0 on success. @eff_addr will have the referenced effective address. @regoff
* will have a register, as an offset from the base of pt_regs, that can be used
* to resolve the associated segment.
*
* -EINVAL on error.
*/
static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
int *regoff, long *eff_addr)
{
long tmp;
if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
return -EINVAL;
insn_get_modrm(insn);
if (!insn->modrm.nbytes)
return -EINVAL;
if (X86_MODRM_MOD(insn->modrm.value) > 2)
return -EINVAL;
*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
/*
* -EDOM means that we must ignore the address_offset. In such a case,
* in 64-bit mode the effective address relative to the rIP of the
* following instruction.
*/
if (*regoff == -EDOM) {
if (user_64bit_mode(regs))
tmp = regs->ip + insn->length;
else
tmp = 0;
} else if (*regoff < 0) {
return -EINVAL;
} else {
tmp = regs_get_register(regs, *regoff);
}
if (insn->addr_bytes == 4) {
int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
*eff_addr = addr32 & 0xffffffff;
} else {
*eff_addr = tmp + insn->displacement.value;
}
return 0;
}
/**
* get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
* @insn: Instruction. Must be valid.
* @regs: Register values as seen when entering kernel mode
* @regoff: Obtained operand offset, in pt_regs, associated with segment
* @eff_addr: Obtained effective address
*
* Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
* After identifying the registers involved in the register-indirect memory
* reference, its value is obtained from the operands in @regs. The computed
* address is stored @eff_addr. Also, the register operand that indicates
* the associated segment is stored in @regoff, this parameter can later be used
* to determine such segment.
*
* Returns:
*
* 0 on success. @eff_addr will have the referenced effective address. @regoff
* will have a register, as an offset from the base of pt_regs, that can be used
* to resolve the associated segment.
*
* -EINVAL on error.
*/
static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
int *regoff, short *eff_addr)
{
int addr_offset1, addr_offset2, ret;
short addr1 = 0, addr2 = 0, displacement;
if (insn->addr_bytes != 2)
return -EINVAL;
insn_get_modrm(insn);
if (!insn->modrm.nbytes)
return -EINVAL;
if (X86_MODRM_MOD(insn->modrm.value) > 2)
return -EINVAL;
ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
if (ret < 0)
return -EINVAL;
/*
* Don't fail on invalid offset values. They might be invalid because
* they cannot be used for this particular value of ModRM. Instead, use
* them in the computation only if they contain a valid value.
*/
if (addr_offset1 != -EDOM)
addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
if (addr_offset2 != -EDOM)
addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
displacement = insn->displacement.value & 0xffff;
*eff_addr = addr1 + addr2 + displacement;
/*
* The first operand register could indicate to use of either SS or DS
* registers to obtain the segment selector. The second operand
* register can only indicate the use of DS. Thus, the first operand
* will be used to obtain the segment selector.
*/
*regoff = addr_offset1;
return 0;
}
/**
* get_eff_addr_sib() - Obtain referenced effective address via SIB
* @insn: Instruction. Must be valid.
* @regs: Register values as seen when entering kernel mode
* @regoff: Obtained operand offset, in pt_regs, associated with segment
* @eff_addr: Obtained effective address
*
* Obtain the effective address referenced by the SIB byte of @insn. After
* identifying the registers involved in the indexed, register-indirect memory
* reference, its value is obtained from the operands in @regs. The computed
* address is stored @eff_addr. Also, the register operand that indicates the
* associated segment is stored in @regoff, this parameter can later be used to
* determine such segment.
*
* Returns:
*
* 0 on success. @eff_addr will have the referenced effective address.
* @base_offset will have a register, as an offset from the base of pt_regs,
* that can be used to resolve the associated segment.
*
* -EINVAL on error.
*/
static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
int *base_offset, long *eff_addr)
{
long base, indx;
int indx_offset;
if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
return -EINVAL;
insn_get_modrm(insn);
if (!insn->modrm.nbytes)
return -EINVAL;
if (X86_MODRM_MOD(insn->modrm.value) > 2)
return -EINVAL;
insn_get_sib(insn);
if (!insn->sib.nbytes)
return -EINVAL;
*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
/*
* Negative values in the base and index offset means an error when
* decoding the SIB byte. Except -EDOM, which means that the registers
* should not be used in the address computation.
*/
if (*base_offset == -EDOM)
base = 0;
else if (*base_offset < 0)
return -EINVAL;
else
base = regs_get_register(regs, *base_offset);
if (indx_offset == -EDOM)
indx = 0;
else if (indx_offset < 0)
return -EINVAL;
else
indx = regs_get_register(regs, indx_offset);
if (insn->addr_bytes == 4) {
int addr32, base32, idx32;
base32 = base & 0xffffffff;
idx32 = indx & 0xffffffff;
addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
addr32 += insn->displacement.value;
*eff_addr = addr32 & 0xffffffff;
} else {
*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
*eff_addr += insn->displacement.value;
}
return 0;
}
/**
* get_addr_ref_16() - Obtain the 16-bit address referred by instruction
* @insn: Instruction containing ModRM byte and displacement
* @regs: Register values as seen when entering kernel mode
*
* This function is to be used with 16-bit address encodings. Obtain the memory
* address referred by the instruction's ModRM and displacement bytes. Also, the
* segment used as base is determined by either any segment override prefixes in
* @insn or the default segment of the registers involved in the address
* computation. In protected mode, segment limits are enforced.
*
* Returns:
*
* Linear address referenced by the instruction operands on success.
*
* -1L on error.
*/
static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
{
unsigned long linear_addr = -1L, seg_base, seg_limit;
int ret, regoff;
short eff_addr;
long tmp;
insn_get_modrm(insn);
insn_get_displacement(insn);
if (insn->addr_bytes != 2)
goto out;
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
ret = get_eff_addr_reg(insn, regs, ®off, &tmp);
if (ret)
goto out;
eff_addr = tmp;
} else {
ret = get_eff_addr_modrm_16(insn, regs, ®off, &eff_addr);
if (ret)
goto out;
}
ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
if (ret)
goto out;
/*
* Before computing the linear address, make sure the effective address
* is within the limits of the segment. In virtual-8086 mode, segment
* limits are not enforced. In such a case, the segment limit is -1L to
* reflect this fact.
*/
if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
goto out;
linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
/* Limit linear address to 20 bits */
if (v8086_mode(regs))
linear_addr &= 0xfffff;
out:
return (void __user *)linear_addr;
}
/**
* get_addr_ref_32() - Obtain a 32-bit linear address
* @insn: Instruction with ModRM, SIB bytes and displacement
* @regs: Register values as seen when entering kernel mode
*
* This function is to be used with 32-bit address encodings to obtain the
* linear memory address referred by the instruction's ModRM, SIB,
* displacement bytes and segment base address, as applicable. If in protected
* mode, segment limits are enforced.
*
* Returns:
*
* Linear address referenced by instruction and registers on success.
*
* -1L on error.
*/
static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
{
unsigned long linear_addr = -1L, seg_base, seg_limit;
int eff_addr, regoff;
long tmp;
int ret;
if (insn->addr_bytes != 4)
goto out;
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
ret = get_eff_addr_reg(insn, regs, ®off, &tmp);
if (ret)
goto out;
eff_addr = tmp;
} else {
if (insn->sib.nbytes) {
ret = get_eff_addr_sib(insn, regs, ®off, &tmp);
if (ret)
goto out;
eff_addr = tmp;
} else {
ret = get_eff_addr_modrm(insn, regs, ®off, &tmp);
if (ret)
goto out;
eff_addr = tmp;
}
}
ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
if (ret)
goto out;
/*
* In protected mode, before computing the linear address, make sure
* the effective address is within the limits of the segment.
* 32-bit addresses can be used in long and virtual-8086 modes if an
* address override prefix is used. In such cases, segment limits are
* not enforced. When in virtual-8086 mode, the segment limit is -1L
* to reflect this situation.
*
* After computed, the effective address is treated as an unsigned
* quantity.
*/
if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
goto out;
/*
* Even though 32-bit address encodings are allowed in virtual-8086
* mode, the address range is still limited to [0x-0xffff].
*/
if (v8086_mode(regs) && (eff_addr & ~0xffff))
goto out;
/*
* Data type long could be 64 bits in size. Ensure that our 32-bit
* effective address is not sign-extended when computing the linear
* address.
*/
linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
/* Limit linear address to 20 bits */
if (v8086_mode(regs))
linear_addr &= 0xfffff;
out:
return (void __user *)linear_addr;
}
/**
* get_addr_ref_64() - Obtain a 64-bit linear address
* @insn: Instruction struct with ModRM and SIB bytes and displacement
* @regs: Structure with register values as seen when entering kernel mode
*
* This function is to be used with 64-bit address encodings to obtain the
* linear memory address referred by the instruction's ModRM, SIB,
* displacement bytes and segment base address, as applicable.
*
* Returns:
*
* Linear address referenced by instruction and registers on success.
*
* -1L on error.
*/
#ifndef CONFIG_X86_64
static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
{
return (void __user *)-1L;
}
#else
static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
{
unsigned long linear_addr = -1L, seg_base;
int regoff, ret;
long eff_addr;
if (insn->addr_bytes != 8)
goto out;
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
ret = get_eff_addr_reg(insn, regs, ®off, &eff_addr);
if (ret)
goto out;
} else {
if (insn->sib.nbytes) {
ret = get_eff_addr_sib(insn, regs, ®off, &eff_addr);
if (ret)
goto out;
} else {
ret = get_eff_addr_modrm(insn, regs, ®off, &eff_addr);
if (ret)
goto out;
}
}
ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
if (ret)
goto out;
linear_addr = (unsigned long)eff_addr + seg_base;
out:
return (void __user *)linear_addr;
}
#endif /* CONFIG_X86_64 */
/**
* insn_get_addr_ref() - Obtain the linear address referred by instruction
* @insn: Instruction structure containing ModRM byte and displacement
* @regs: Structure with register values as seen when entering kernel mode
*
* Obtain the linear address referred by the instruction's ModRM, SIB and
* displacement bytes, and segment base, as applicable. In protected mode,
* segment limits are enforced.
*
* Returns:
*
* Linear address referenced by instruction and registers on success.
*
* -1L on error.
*/
void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
{
if (!insn || !regs)
return (void __user *)-1L;
switch (insn->addr_bytes) {
case 2:
return get_addr_ref_16(insn, regs);
case 4:
return get_addr_ref_32(insn, regs);
case 8:
return get_addr_ref_64(insn, regs);
default:
return (void __user *)-1L;
}
}
|