1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021-2022 Intel Corporation */
#undef pr_fmt
#define pr_fmt(fmt) "tdx: " fmt
#include <linux/cpufeature.h>
#include <asm/coco.h>
#include <asm/tdx.h>
#include <asm/vmx.h>
/* TDX module Call Leaf IDs */
#define TDX_GET_INFO 1
#define TDX_GET_VEINFO 3
/*
* Wrapper for standard use of __tdx_hypercall with no output aside from
* return code.
*/
static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = fn,
.r12 = r12,
.r13 = r13,
.r14 = r14,
.r15 = r15,
};
return __tdx_hypercall(&args, 0);
}
/* Called from __tdx_hypercall() for unrecoverable failure */
void __tdx_hypercall_failed(void)
{
panic("TDVMCALL failed. TDX module bug?");
}
/*
* The TDG.VP.VMCALL-Instruction-execution sub-functions are defined
* independently from but are currently matched 1:1 with VMX EXIT_REASONs.
* Reusing the KVM EXIT_REASON macros makes it easier to connect the host and
* guest sides of these calls.
*/
static u64 hcall_func(u64 exit_reason)
{
return exit_reason;
}
/*
* Used for TDX guests to make calls directly to the TD module. This
* should only be used for calls that have no legitimate reason to fail
* or where the kernel can not survive the call failing.
*/
static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
struct tdx_module_output *out)
{
if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
}
static u64 get_cc_mask(void)
{
struct tdx_module_output out;
unsigned int gpa_width;
/*
* TDINFO TDX module call is used to get the TD execution environment
* information like GPA width, number of available vcpus, debug mode
* information, etc. More details about the ABI can be found in TDX
* Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
* [TDG.VP.INFO].
*
* The GPA width that comes out of this call is critical. TDX guests
* can not meaningfully run without it.
*/
tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
gpa_width = out.rcx & GENMASK(5, 0);
/*
* The highest bit of a guest physical address is the "sharing" bit.
* Set it for shared pages and clear it for private pages.
*/
return BIT_ULL(gpa_width - 1);
}
static u64 __cpuidle __halt(const bool irq_disabled, const bool do_sti)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_HLT),
.r12 = irq_disabled,
};
/*
* Emulate HLT operation via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
*
* The VMM uses the "IRQ disabled" param to understand IRQ
* enabled status (RFLAGS.IF) of the TD guest and to determine
* whether or not it should schedule the halted vCPU if an
* IRQ becomes pending. E.g. if IRQs are disabled, the VMM
* can keep the vCPU in virtual HLT, even if an IRQ is
* pending, without hanging/breaking the guest.
*/
return __tdx_hypercall(&args, do_sti ? TDX_HCALL_ISSUE_STI : 0);
}
static bool handle_halt(void)
{
/*
* Since non safe halt is mainly used in CPU offlining
* and the guest will always stay in the halt state, don't
* call the STI instruction (set do_sti as false).
*/
const bool irq_disabled = irqs_disabled();
const bool do_sti = false;
if (__halt(irq_disabled, do_sti))
return false;
return true;
}
void __cpuidle tdx_safe_halt(void)
{
/*
* For do_sti=true case, __tdx_hypercall() function enables
* interrupts using the STI instruction before the TDCALL. So
* set irq_disabled as false.
*/
const bool irq_disabled = false;
const bool do_sti = true;
/*
* Use WARN_ONCE() to report the failure.
*/
if (__halt(irq_disabled, do_sti))
WARN_ONCE(1, "HLT instruction emulation failed\n");
}
static bool read_msr(struct pt_regs *regs)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_MSR_READ),
.r12 = regs->cx,
};
/*
* Emulate the MSR read via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
*/
if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
return false;
regs->ax = lower_32_bits(args.r11);
regs->dx = upper_32_bits(args.r11);
return true;
}
static bool write_msr(struct pt_regs *regs)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
.r12 = regs->cx,
.r13 = (u64)regs->dx << 32 | regs->ax,
};
/*
* Emulate the MSR write via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
*/
return !__tdx_hypercall(&args, 0);
}
void tdx_get_ve_info(struct ve_info *ve)
{
struct tdx_module_output out;
/*
* Called during #VE handling to retrieve the #VE info from the
* TDX module.
*
* This has to be called early in #VE handling. A "nested" #VE which
* occurs before this will raise a #DF and is not recoverable.
*
* The call retrieves the #VE info from the TDX module, which also
* clears the "#VE valid" flag. This must be done before anything else
* because any #VE that occurs while the valid flag is set will lead to
* #DF.
*
* Note, the TDX module treats virtual NMIs as inhibited if the #VE
* valid flag is set. It means that NMI=>#VE will not result in a #DF.
*/
tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
/* Transfer the output parameters */
ve->exit_reason = out.rcx;
ve->exit_qual = out.rdx;
ve->gla = out.r8;
ve->gpa = out.r9;
ve->instr_len = lower_32_bits(out.r10);
ve->instr_info = upper_32_bits(out.r10);
}
/* Handle the kernel #VE */
static bool virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
{
switch (ve->exit_reason) {
case EXIT_REASON_HLT:
return handle_halt();
case EXIT_REASON_MSR_READ:
return read_msr(regs);
case EXIT_REASON_MSR_WRITE:
return write_msr(regs);
default:
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
return false;
}
}
bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
{
bool ret;
if (user_mode(regs))
ret = false;
else
ret = virt_exception_kernel(regs, ve);
/* After successful #VE handling, move the IP */
if (ret)
regs->ip += ve->instr_len;
return ret;
}
void __init tdx_early_init(void)
{
u64 cc_mask;
u32 eax, sig[3];
cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]);
if (memcmp(TDX_IDENT, sig, sizeof(sig)))
return;
setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
cc_set_vendor(CC_VENDOR_INTEL);
cc_mask = get_cc_mask();
cc_set_mask(cc_mask);
/*
* All bits above GPA width are reserved and kernel treats shared bit
* as flag, not as part of physical address.
*
* Adjust physical mask to only cover valid GPA bits.
*/
physical_mask &= cc_mask - 1;
pr_info("Guest detected\n");
}
|