1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
|
/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* This version of the driver is specific to the FADS implementation,
* since the board contains control registers external to the processor
* for the control of the LevelOne LXT970 transceiver. The MPC860T manual
* describes connections using the internal parallel port I/O, which
* is basically all of Port D.
*
* Includes support for the following PHYs: QS6612, LXT970, LXT971/2.
*
* Right now, I am very wasteful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
* Much better multiple PHY support by Magnus Damm.
* Copyright (c) 2000 Ericsson Radio Systems AB.
*
* Make use of MII for PHY control configurable.
* Some fixes.
* Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering.
*
* Support for AMD AM79C874 added.
* Thomas Lange, thomas@corelatus.com
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#ifdef CONFIG_FEC_PACKETHOOK
#include <linux/pkthook.h>
#endif
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/cpm1.h>
#ifdef CONFIG_USE_MDIO
/* Forward declarations of some structures to support different PHYs
*/
typedef struct {
uint mii_data;
void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
typedef struct {
uint id;
char *name;
const phy_cmd_t *config;
const phy_cmd_t *startup;
const phy_cmd_t *ack_int;
const phy_cmd_t *shutdown;
} phy_info_t;
#endif /* CONFIG_USE_MDIO */
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it is best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#ifdef CONFIG_ENET_BIG_BUFFERS
#define FEC_ENET_RX_PAGES 16
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
#else
#define FEC_ENET_RX_PAGES 4
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE 8 /* Must be power of two */
#define TX_RING_MOD_MASK 7 /* for this to work */
#endif
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
/*
*/
#define FEC_ECNTRL_PINMUX 0x00000004
#define FEC_ECNTRL_ETHER_EN 0x00000002
#define FEC_ECNTRL_RESET 0x00000001
#define FEC_RCNTRL_BC_REJ 0x00000010
#define FEC_RCNTRL_PROM 0x00000008
#define FEC_RCNTRL_MII_MODE 0x00000004
#define FEC_RCNTRL_DRT 0x00000002
#define FEC_RCNTRL_LOOP 0x00000001
#define FEC_TCNTRL_FDEN 0x00000004
#define FEC_TCNTRL_HBC 0x00000002
#define FEC_TCNTRL_GTS 0x00000001
/* Delay to wait for FEC reset command to complete (in us)
*/
#define FEC_RESET_DELAY 50
/* The FEC stores dest/src/type, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1518
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct fec_enet_private {
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses.
*/
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
/* Virtual addresses for the receive buffers because we can't
* do a __va() on them anymore.
*/
unsigned char *rx_vaddr[RX_RING_SIZE];
struct net_device_stats stats;
uint tx_full;
spinlock_t lock;
#ifdef CONFIG_USE_MDIO
uint phy_id;
uint phy_id_done;
uint phy_status;
uint phy_speed;
phy_info_t *phy;
struct work_struct phy_task;
struct net_device *dev;
uint sequence_done;
uint phy_addr;
#endif /* CONFIG_USE_MDIO */
int link;
int old_link;
int full_duplex;
#ifdef CONFIG_FEC_PACKETHOOK
unsigned long ph_lock;
fec_ph_func *ph_rxhandler;
fec_ph_func *ph_txhandler;
__u16 ph_proto;
volatile __u32 *ph_regaddr;
void *ph_priv;
#endif
};
static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
#ifdef CONFIG_USE_MDIO
static void fec_enet_mii(struct net_device *dev);
#endif /* CONFIG_USE_MDIO */
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
#ifdef CONFIG_FEC_PACKETHOOK
static void fec_enet_tx(struct net_device *dev, __u32 regval);
static void fec_enet_rx(struct net_device *dev, __u32 regval);
#else
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
#endif
static int fec_enet_close(struct net_device *dev);
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static ushort my_enet_addr[3];
#ifdef CONFIG_USE_MDIO
/* MII processing. We keep this as simple as possible. Requests are
* placed on the list (if there is room). When the request is finished
* by the MII, an optional function may be called.
*/
typedef struct mii_list {
uint mii_regval;
void (*mii_func)(uint val, struct net_device *dev);
struct mii_list *mii_next;
} mii_list_t;
#define NMII 20
mii_list_t mii_cmds[NMII];
mii_list_t *mii_free;
mii_list_t *mii_head;
mii_list_t *mii_tail;
static int mii_queue(struct net_device *dev, int request,
void (*func)(uint, struct net_device *));
/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
#define mk_mii_end 0
#endif /* CONFIG_USE_MDIO */
/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)
#ifdef CONFIG_USE_MDIO
/* Register definitions for the PHY.
*/
#define MII_REG_CR 0 /* Control Register */
#define MII_REG_SR 1 /* Status Register */
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
#define MII_REG_ANER 6 /* A-N Expansion Register */
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
/* values for phy_status */
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
#endif /* CONFIG_USE_MDIO */
#ifdef CONFIG_FEC_PACKETHOOK
int
fec_register_ph(struct net_device *dev, fec_ph_func *rxfun, fec_ph_func *txfun,
__u16 proto, volatile __u32 *regaddr, void *priv)
{
struct fec_enet_private *fep;
int retval = 0;
fep = dev->priv;
if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
/* Someone is messing with the packet hook */
return -EAGAIN;
}
if (fep->ph_rxhandler != NULL || fep->ph_txhandler != NULL) {
retval = -EBUSY;
goto out;
}
fep->ph_rxhandler = rxfun;
fep->ph_txhandler = txfun;
fep->ph_proto = proto;
fep->ph_regaddr = regaddr;
fep->ph_priv = priv;
out:
fep->ph_lock = 0;
return retval;
}
int
fec_unregister_ph(struct net_device *dev)
{
struct fec_enet_private *fep;
int retval = 0;
fep = dev->priv;
if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
/* Someone is messing with the packet hook */
return -EAGAIN;
}
fep->ph_rxhandler = fep->ph_txhandler = NULL;
fep->ph_proto = 0;
fep->ph_regaddr = NULL;
fep->ph_priv = NULL;
fep->ph_lock = 0;
return retval;
}
EXPORT_SYMBOL(fec_register_ph);
EXPORT_SYMBOL(fec_unregister_ph);
#endif /* CONFIG_FEC_PACKETHOOK */
static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *fecp;
volatile cbd_t *bdp;
fep = dev->priv;
fecp = (volatile fec_t*)dev->base_addr;
if (!fep->link) {
/* Link is down or autonegotiation is in progress. */
return 1;
}
/* Fill in a Tx ring entry */
bdp = fep->cur_tx;
#ifndef final_version
if (bdp->cbd_sc & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since dev->tbusy should be set.
*/
printk("%s: tx queue full!.\n", dev->name);
return 1;
}
#endif
/* Clear all of the status flags.
*/
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
/* Set buffer length and buffer pointer.
*/
bdp->cbd_bufaddr = __pa(skb->data);
bdp->cbd_datlen = skb->len;
/* Save skb pointer.
*/
fep->tx_skbuff[fep->skb_cur] = skb;
fep->stats.tx_bytes += skb->len;
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
flush_dcache_range((unsigned long)skb->data,
(unsigned long)skb->data + skb->len);
/* disable interrupts while triggering transmit */
spin_lock_irq(&fep->lock);
/* Send it on its way. Tell FEC its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
dev->trans_start = jiffies;
/* Trigger transmission start */
fecp->fec_x_des_active = 0x01000000;
/* If this was the last BD in the ring, start at the beginning again.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
bdp = fep->tx_bd_base;
} else {
bdp++;
}
if (bdp->cbd_sc & BD_ENET_TX_READY) {
netif_stop_queue(dev);
fep->tx_full = 1;
}
fep->cur_tx = (cbd_t *)bdp;
spin_unlock_irq(&fep->lock);
return 0;
}
static void
fec_timeout(struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
printk("%s: transmit timed out.\n", dev->name);
fep->stats.tx_errors++;
#ifndef final_version
{
int i;
cbd_t *bdp;
printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
(unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
(unsigned long)fep->dirty_tx,
(unsigned long)fep->cur_rx);
bdp = fep->tx_bd_base;
printk(" tx: %u buffers\n", TX_RING_SIZE);
for (i = 0 ; i < TX_RING_SIZE; i++) {
printk(" %08x: %04x %04x %08x\n",
(uint) bdp,
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
bdp++;
}
bdp = fep->rx_bd_base;
printk(" rx: %lu buffers\n", RX_RING_SIZE);
for (i = 0 ; i < RX_RING_SIZE; i++) {
printk(" %08x: %04x %04x %08x\n",
(uint) bdp,
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
bdp++;
}
}
#endif
if (!fep->tx_full)
netif_wake_queue(dev);
}
/* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t
fec_enet_interrupt(int irq, void * dev_id)
{
struct net_device *dev = dev_id;
volatile fec_t *fecp;
uint int_events;
#ifdef CONFIG_FEC_PACKETHOOK
struct fec_enet_private *fep = dev->priv;
__u32 regval;
if (fep->ph_regaddr) regval = *fep->ph_regaddr;
#endif
fecp = (volatile fec_t*)dev->base_addr;
/* Get the interrupt events that caused us to be here.
*/
while ((int_events = fecp->fec_ievent) != 0) {
fecp->fec_ievent = int_events;
if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {
printk("FEC ERROR %x\n", int_events);
}
/* Handle receive event in its own function.
*/
if (int_events & FEC_ENET_RXF) {
#ifdef CONFIG_FEC_PACKETHOOK
fec_enet_rx(dev, regval);
#else
fec_enet_rx(dev);
#endif
}
/* Transmit OK, or non-fatal error. Update the buffer
descriptors. FEC handles all errors, we just discover
them as part of the transmit process.
*/
if (int_events & FEC_ENET_TXF) {
#ifdef CONFIG_FEC_PACKETHOOK
fec_enet_tx(dev, regval);
#else
fec_enet_tx(dev);
#endif
}
if (int_events & FEC_ENET_MII) {
#ifdef CONFIG_USE_MDIO
fec_enet_mii(dev);
#else
printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__, __LINE__, __func__);
#endif /* CONFIG_USE_MDIO */
}
}
return IRQ_RETVAL(IRQ_HANDLED);
}
static void
#ifdef CONFIG_FEC_PACKETHOOK
fec_enet_tx(struct net_device *dev, __u32 regval)
#else
fec_enet_tx(struct net_device *dev)
#endif
{
struct fec_enet_private *fep;
volatile cbd_t *bdp;
struct sk_buff *skb;
fep = dev->priv;
/* lock while transmitting */
spin_lock(&fep->lock);
bdp = fep->dirty_tx;
while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
if (bdp == fep->cur_tx && fep->tx_full == 0) break;
skb = fep->tx_skbuff[fep->skb_dirty];
/* Check for errors. */
if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN |
BD_ENET_TX_CSL)) {
fep->stats.tx_errors++;
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
} else {
#ifdef CONFIG_FEC_PACKETHOOK
/* Packet hook ... */
if (fep->ph_txhandler &&
((struct ethhdr *)skb->data)->h_proto
== fep->ph_proto) {
fep->ph_txhandler((__u8*)skb->data, skb->len,
regval, fep->ph_priv);
}
#endif
fep->stats.tx_packets++;
}
#ifndef final_version
if (bdp->cbd_sc & BD_ENET_TX_READY)
printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (bdp->cbd_sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/* Free the sk buffer associated with this last transmit.
*/
#if 0
printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty);
#endif
dev_kfree_skb_irq (skb/*, FREE_WRITE*/);
fep->tx_skbuff[fep->skb_dirty] = NULL;
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
else
bdp++;
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (fep->tx_full) {
fep->tx_full = 0;
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
#ifdef CONFIG_FEC_PACKETHOOK
/* Re-read register. Not exactly guaranteed to be correct,
but... */
if (fep->ph_regaddr) regval = *fep->ph_regaddr;
#endif
}
fep->dirty_tx = (cbd_t *)bdp;
spin_unlock(&fep->lock);
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static void
#ifdef CONFIG_FEC_PACKETHOOK
fec_enet_rx(struct net_device *dev, __u32 regval)
#else
fec_enet_rx(struct net_device *dev)
#endif
{
struct fec_enet_private *fep;
volatile fec_t *fecp;
volatile cbd_t *bdp;
struct sk_buff *skb;
ushort pkt_len;
__u8 *data;
fep = dev->priv;
fecp = (volatile fec_t*)dev->base_addr;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
#ifndef final_version
/* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
printk("FEC ENET: rcv is not +last\n");
#endif
/* Check for errors. */
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
/* Frame too long or too short. */
fep->stats.rx_length_errors++;
}
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
fep->stats.rx_frame_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
fep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
fep->stats.rx_crc_errors++;
}
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if (bdp->cbd_sc & BD_ENET_RX_CL) {
fep->stats.rx_errors++;
fep->stats.rx_frame_errors++;
goto rx_processing_done;
}
/* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
fep->stats.rx_bytes += pkt_len;
data = fep->rx_vaddr[bdp - fep->rx_bd_base];
#ifdef CONFIG_FEC_PACKETHOOK
/* Packet hook ... */
if (fep->ph_rxhandler) {
if (((struct ethhdr *)data)->h_proto == fep->ph_proto) {
switch (fep->ph_rxhandler(data, pkt_len, regval,
fep->ph_priv)) {
case 1:
goto rx_processing_done;
break;
case 0:
break;
default:
fep->stats.rx_errors++;
goto rx_processing_done;
}
}
}
/* If it wasn't filtered - copy it to an sk buffer. */
#endif
/* This does 16 byte alignment, exactly what we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
skb = dev_alloc_skb(pkt_len-4);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
fep->stats.rx_dropped++;
} else {
skb_put(skb,pkt_len-4); /* Make room */
skb_copy_to_linear_data(skb, data, pkt_len-4);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
}
rx_processing_done:
/* Clear the status flags for this buffer.
*/
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty.
*/
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
/* Update BD pointer to next entry.
*/
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
bdp = fep->rx_bd_base;
else
bdp++;
#if 1
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
fecp->fec_r_des_active = 0x01000000;
#endif
#ifdef CONFIG_FEC_PACKETHOOK
/* Re-read register. Not exactly guaranteed to be correct,
but... */
if (fep->ph_regaddr) regval = *fep->ph_regaddr;
#endif
} /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
fep->cur_rx = (cbd_t *)bdp;
#if 0
/* Doing this here will allow us to process all frames in the
* ring before the FEC is allowed to put more there. On a heavily
* loaded network, some frames may be lost. Unfortunately, this
* increases the interrupt overhead since we can potentially work
* our way back to the interrupt return only to come right back
* here.
*/
fecp->fec_r_des_active = 0x01000000;
#endif
}
#ifdef CONFIG_USE_MDIO
static void
fec_enet_mii(struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *ep;
mii_list_t *mip;
uint mii_reg;
fep = (struct fec_enet_private *)dev->priv;
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
mii_reg = ep->fec_mii_data;
if ((mip = mii_head) == NULL) {
printk("MII and no head!\n");
return;
}
if (mip->mii_func != NULL)
(*(mip->mii_func))(mii_reg, dev);
mii_head = mip->mii_next;
mip->mii_next = mii_free;
mii_free = mip;
if ((mip = mii_head) != NULL) {
ep->fec_mii_data = mip->mii_regval;
}
}
static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
struct fec_enet_private *fep;
unsigned long flags;
mii_list_t *mip;
int retval;
/* Add PHY address to register command.
*/
fep = dev->priv;
regval |= fep->phy_addr << 23;
retval = 0;
/* lock while modifying mii_list */
spin_lock_irqsave(&fep->lock, flags);
if ((mip = mii_free) != NULL) {
mii_free = mip->mii_next;
mip->mii_regval = regval;
mip->mii_func = func;
mip->mii_next = NULL;
if (mii_head) {
mii_tail->mii_next = mip;
mii_tail = mip;
} else {
mii_head = mii_tail = mip;
(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
}
} else {
retval = 1;
}
spin_unlock_irqrestore(&fep->lock, flags);
return(retval);
}
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
int k;
if(!c)
return;
for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
}
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
if (mii_reg & 0x0004)
*s |= PHY_STAT_LINK;
if (mii_reg & 0x0010)
*s |= PHY_STAT_FAULT;
if (mii_reg & 0x0020)
*s |= PHY_STAT_ANC;
fep->link = (*s & PHY_STAT_LINK) ? 1 : 0;
}
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
if (mii_reg & 0x1000)
*s |= PHY_CONF_ANE;
if (mii_reg & 0x4000)
*s |= PHY_CONF_LOOP;
}
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_CONF_SPMASK);
if (mii_reg & 0x0020)
*s |= PHY_CONF_10HDX;
if (mii_reg & 0x0040)
*s |= PHY_CONF_10FDX;
if (mii_reg & 0x0080)
*s |= PHY_CONF_100HDX;
if (mii_reg & 0x00100)
*s |= PHY_CONF_100FDX;
}
#if 0
static void mii_disp_reg(uint mii_reg, struct net_device *dev)
{
printk("reg %u = 0x%04x\n", (mii_reg >> 18) & 0x1f, mii_reg & 0xffff);
}
#endif
/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards */
#ifdef CONFIG_FEC_LXT970
#define MII_LXT970_MIRROR 16 /* Mirror register */
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
#define MII_LXT970_CONFIG 19 /* Configuration Register */
#define MII_LXT970_CSR 20 /* Chip Status Register */
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_STAT_SPMASK);
if (mii_reg & 0x0800) {
if (mii_reg & 0x1000)
*s |= PHY_STAT_100FDX;
else
*s |= PHY_STAT_100HDX;
}
else {
if (mii_reg & 0x1000)
*s |= PHY_STAT_10FDX;
else
*s |= PHY_STAT_10HDX;
}
}
static phy_info_t phy_info_lxt970 = {
0x07810000,
"LXT970",
(const phy_cmd_t []) { /* config */
#if 0
// { mk_mii_write(MII_REG_ANAR, 0x0021), NULL },
/* Set default operation of 100-TX....for some reason
* some of these bits are set on power up, which is wrong.
*/
{ mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
#endif
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* read SR and ISR to acknowledge */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT970_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_LXT970 */
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards */
#ifdef CONFIG_FEC_LXT971
/* register definitions for the 971 */
#define MII_LXT971_PCR 16 /* Port Control Register */
#define MII_LXT971_SR2 17 /* Status Register 2 */
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
/*
* I had some nice ideas of running the MDIO faster...
* The 971 should support 8MHz and I tried it, but things acted really
* weird, so 2.5 MHz ought to be enough for anyone...
*/
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_STAT_SPMASK);
if (mii_reg & 0x4000) {
if (mii_reg & 0x0200)
*s |= PHY_STAT_100FDX;
else
*s |= PHY_STAT_100HDX;
}
else {
if (mii_reg & 0x0200)
*s |= PHY_STAT_10FDX;
else
*s |= PHY_STAT_10HDX;
}
if (mii_reg & 0x0008)
*s |= PHY_STAT_FAULT;
}
static phy_info_t phy_info_lxt971 = {
0x0001378e,
"LXT971",
(const phy_cmd_t []) { /* config */
// { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
/* Somehow does the 971 tell me that the link is down
* the first read after power-up.
* read here to get a valid value in ack_int */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_LXT971_ISR), NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_LXT970 */
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
#ifdef CONFIG_FEC_QS6612
/* register definitions */
#define MII_QS6612_MCR 17 /* Mode Control Register */
#define MII_QS6612_FTR 27 /* Factory Test Register */
#define MII_QS6612_MCO 28 /* Misc. Control Register */
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_STAT_SPMASK);
switch((mii_reg >> 2) & 7) {
case 1: *s |= PHY_STAT_10HDX; break;
case 2: *s |= PHY_STAT_100HDX; break;
case 5: *s |= PHY_STAT_10FDX; break;
case 6: *s |= PHY_STAT_100FDX; break;
}
}
static phy_info_t phy_info_qs6612 = {
0x00181440,
"QS6612",
(const phy_cmd_t []) { /* config */
// { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */
/* The PHY powers up isolated on the RPX,
* so send a command to allow operation.
*/
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
/* parse cr and anar to get some info */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* we need to read ISR, SR and ANER to acknowledge */
{ mk_mii_read(MII_QS6612_ISR), NULL },
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_REG_ANER), NULL },
/* read pcr to get info */
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_QS6612 */
/* ------------------------------------------------------------------------- */
/* The Advanced Micro Devices AM79C874 is used on the ICU862 */
#ifdef CONFIG_FEC_AM79C874
/* register definitions for the 79C874 */
#define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */
#define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */
#define MII_AM79C874_DR 18 /* Diagnostic Register */
#define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */
#define MII_AM79C874_MCR 21 /* Mode Control Register */
#define MII_AM79C874_DC 23 /* Disconnect Counter */
#define MII_AM79C874_REC 24 /* Receiver Error Counter */
static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data)
{
volatile struct fec_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
/* Register 18: Bit 10 is data rate, 11 is Duplex */
switch ((mii_reg >> 10) & 3) {
case 0: s |= PHY_STAT_10HDX; break;
case 1: s |= PHY_STAT_100HDX; break;
case 2: s |= PHY_STAT_10FDX; break;
case 3: s |= PHY_STAT_100FDX; break;
}
fep->phy_status = s;
}
static phy_info_t phy_info_amd79c874 = {
0x00022561,
"AM79C874",
(const phy_cmd_t []) { /* config */
// { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr },
/* we only need to read ICSR to acknowledge */
{ mk_mii_read(MII_AM79C874_ICSR), NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_AM79C874 */
static phy_info_t *phy_info[] = {
#ifdef CONFIG_FEC_LXT970
&phy_info_lxt970,
#endif /* CONFIG_FEC_LXT970 */
#ifdef CONFIG_FEC_LXT971
&phy_info_lxt971,
#endif /* CONFIG_FEC_LXT971 */
#ifdef CONFIG_FEC_QS6612
&phy_info_qs6612,
#endif /* CONFIG_FEC_QS6612 */
#ifdef CONFIG_FEC_AM79C874
&phy_info_amd79c874,
#endif /* CONFIG_FEC_AM79C874 */
NULL
};
static void mii_display_status(struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
if (!fep->link && !fep->old_link) {
/* Link is still down - don't print anything */
return;
}
printk("%s: status: ", dev->name);
if (!fep->link) {
printk("link down");
} else {
printk("link up");
switch(*s & PHY_STAT_SPMASK) {
case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
default:
printk(", Unknown speed/duplex");
}
if (*s & PHY_STAT_ANC)
printk(", auto-negotiation complete");
}
if (*s & PHY_STAT_FAULT)
printk(", remote fault");
printk(".\n");
}
static void mii_display_config(struct work_struct *work)
{
struct fec_enet_private *fep =
container_of(work, struct fec_enet_private, phy_task);
struct net_device *dev = fep->dev;
volatile uint *s = &(fep->phy_status);
printk("%s: config: auto-negotiation ", dev->name);
if (*s & PHY_CONF_ANE)
printk("on");
else
printk("off");
if (*s & PHY_CONF_100FDX)
printk(", 100FDX");
if (*s & PHY_CONF_100HDX)
printk(", 100HDX");
if (*s & PHY_CONF_10FDX)
printk(", 10FDX");
if (*s & PHY_CONF_10HDX)
printk(", 10HDX");
if (!(*s & PHY_CONF_SPMASK))
printk(", No speed/duplex selected?");
if (*s & PHY_CONF_LOOP)
printk(", loopback enabled");
printk(".\n");
fep->sequence_done = 1;
}
static void mii_relink(struct work_struct *work)
{
struct fec_enet_private *fep =
container_of(work, struct fec_enet_private, phy_task);
struct net_device *dev = fep->dev;
int duplex;
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
mii_display_status(dev);
fep->old_link = fep->link;
if (fep->link) {
duplex = 0;
if (fep->phy_status
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
duplex = 1;
fec_restart(dev, duplex);
}
else
fec_stop(dev);
#if 0
enable_irq(fep->mii_irq);
#endif
}
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
fep->dev = dev;
INIT_WORK(&fep->phy_task, mii_relink);
schedule_work(&fep->phy_task);
}
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
fep->dev = dev;
INIT_WORK(&fep->phy_task, mii_display_config);
schedule_work(&fep->phy_task);
}
phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
{ mk_mii_end, } };
phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
{ mk_mii_end, } };
/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep;
int i;
fep = dev->priv;
fep->phy_id |= (mii_reg & 0xffff);
for(i = 0; phy_info[i]; i++)
if(phy_info[i]->id == (fep->phy_id >> 4))
break;
if(!phy_info[i])
panic("%s: PHY id 0x%08x is not supported!\n",
dev->name, fep->phy_id);
fep->phy = phy_info[i];
fep->phy_id_done = 1;
printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
}
/* Scan all of the MII PHY addresses looking for someone to respond
* with a valid ID. This usually happens quickly.
*/
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep;
uint phytype;
fep = dev->priv;
if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
/* Got first part of ID, now get remainder.
*/
fep->phy_id = phytype << 16;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
} else {
fep->phy_addr++;
if (fep->phy_addr < 32) {
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
mii_discover_phy);
} else {
printk("fec: No PHY device found.\n");
}
}
}
#endif /* CONFIG_USE_MDIO */
/* This interrupt occurs when the PHY detects a link change.
*/
static
#ifdef CONFIG_RPXCLASSIC
void mii_link_interrupt(void *dev_id)
#else
irqreturn_t mii_link_interrupt(int irq, void * dev_id)
#endif
{
#ifdef CONFIG_USE_MDIO
struct net_device *dev = dev_id;
struct fec_enet_private *fep = dev->priv;
volatile immap_t *immap = (immap_t *)IMAP_ADDR;
volatile fec_t *fecp = &(immap->im_cpm.cp_fec);
unsigned int ecntrl = fecp->fec_ecntrl;
/* We need the FEC enabled to access the MII
*/
if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN;
}
#endif /* CONFIG_USE_MDIO */
#if 0
disable_irq(fep->mii_irq); /* disable now, enable later */
#endif
#ifdef CONFIG_USE_MDIO
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
fecp->fec_ecntrl = ecntrl; /* restore old settings */
}
#else
printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__, __LINE__, __func__);
#endif /* CONFIG_USE_MDIO */
#ifndef CONFIG_RPXCLASSIC
return IRQ_RETVAL(IRQ_HANDLED);
#endif /* CONFIG_RPXCLASSIC */
}
static int
fec_enet_open(struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
#ifdef CONFIG_USE_MDIO
fep->sequence_done = 0;
fep->link = 0;
if (fep->phy) {
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, fep->phy->config);
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
while(!fep->sequence_done)
schedule();
mii_do_cmd(dev, fep->phy->startup);
netif_start_queue(dev);
return 0; /* Success */
}
return -ENODEV; /* No PHY we understand */
#else
fep->link = 1;
netif_start_queue(dev);
return 0; /* Success */
#endif /* CONFIG_USE_MDIO */
}
static int
fec_enet_close(struct net_device *dev)
{
/* Don't know what to do yet.
*/
netif_stop_queue(dev);
fec_stop(dev);
return 0;
}
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
{
struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
return &fep->stats;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void set_multicast_list(struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *ep;
fep = (struct fec_enet_private *)dev->priv;
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
if (dev->flags&IFF_PROMISC) {
/* Log any net taps. */
printk("%s: Promiscuous mode enabled.\n", dev->name);
ep->fec_r_cntrl |= FEC_RCNTRL_PROM;
} else {
ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep->fec_hash_table_high = 0xffffffff;
ep->fec_hash_table_low = 0xffffffff;
}
#if 0
else {
/* Clear filter and add the addresses in the list.
*/
ep->sen_gaddr1 = 0;
ep->sen_gaddr2 = 0;
ep->sen_gaddr3 = 0;
ep->sen_gaddr4 = 0;
dmi = dev->mc_list;
for (i=0; i<dev->mc_count; i++) {
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1))
continue;
/* The address in dmi_addr is LSB first,
* and taddr is MSB first. We have to
* copy bytes MSB first from dmi_addr.
*/
mcptr = (u_char *)dmi->dmi_addr + 5;
tdptr = (u_char *)&ep->sen_taddrh;
for (j=0; j<6; j++)
*tdptr++ = *mcptr--;
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
/* this delay is necessary here -- Cort */
udelay(10);
while (cpmp->cp_cpcr & CPM_CR_FLG);
}
}
#endif
}
}
/* Initialize the FEC Ethernet on 860T.
*/
static int __init fec_enet_init(void)
{
struct net_device *dev;
struct fec_enet_private *fep;
int i, j, k, err;
unsigned char *eap, *iap, *ba;
dma_addr_t mem_addr;
volatile cbd_t *bdp;
cbd_t *cbd_base;
volatile immap_t *immap;
volatile fec_t *fecp;
bd_t *bd;
#ifdef CONFIG_SCC_ENET
unsigned char tmpaddr[6];
#endif
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
bd = (bd_t *)__res;
dev = alloc_etherdev(sizeof(*fep));
if (!dev)
return -ENOMEM;
fep = dev->priv;
fecp = &(immap->im_cpm.cp_fec);
/* Whack a reset. We should wait for this.
*/
fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
for (i = 0;
(fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
++i) {
udelay(1);
}
if (i == FEC_RESET_DELAY) {
printk ("FEC Reset timeout!\n");
}
/* Set the Ethernet address. If using multiple Enets on the 8xx,
* this needs some work to get unique addresses.
*/
eap = (unsigned char *)my_enet_addr;
iap = bd->bi_enetaddr;
#ifdef CONFIG_SCC_ENET
/*
* If a board has Ethernet configured both on a SCC and the
* FEC, it needs (at least) 2 MAC addresses (we know that Sun
* disagrees, but anyway). For the FEC port, we create
* another address by setting one of the address bits above
* something that would have (up to now) been allocated.
*/
for (i=0; i<6; i++)
tmpaddr[i] = *iap++;
tmpaddr[3] |= 0x80;
iap = tmpaddr;
#endif
for (i=0; i<6; i++) {
dev->dev_addr[i] = *eap++ = *iap++;
}
/* Allocate memory for buffer descriptors.
*/
if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
printk("FEC init error. Need more space.\n");
printk("FEC initialization failed.\n");
return 1;
}
cbd_base = (cbd_t *)dma_alloc_coherent(dev->class_dev.dev, PAGE_SIZE,
&mem_addr, GFP_KERNEL);
/* Set receive and transmit descriptor base.
*/
fep->rx_bd_base = cbd_base;
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
fep->skb_cur = fep->skb_dirty = 0;
/* Initialize the receive buffer descriptors.
*/
bdp = fep->rx_bd_base;
k = 0;
for (i=0; i<FEC_ENET_RX_PAGES; i++) {
/* Allocate a page.
*/
ba = (unsigned char *)dma_alloc_coherent(dev->class_dev.dev,
PAGE_SIZE,
&mem_addr,
GFP_KERNEL);
/* BUG: no check for failure */
/* Initialize the BD for every fragment in the page.
*/
for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp->cbd_bufaddr = mem_addr;
fep->rx_vaddr[k++] = ba;
mem_addr += FEC_ENET_RX_FRSIZE;
ba += FEC_ENET_RX_FRSIZE;
bdp++;
}
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
#ifdef CONFIG_FEC_PACKETHOOK
fep->ph_lock = 0;
fep->ph_rxhandler = fep->ph_txhandler = NULL;
fep->ph_proto = 0;
fep->ph_regaddr = NULL;
fep->ph_priv = NULL;
#endif
/* Install our interrupt handler.
*/
if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
panic("Could not allocate FEC IRQ!");
#ifdef CONFIG_RPXCLASSIC
/* Make Port C, bit 15 an input that causes interrupts.
*/
immap->im_ioport.iop_pcpar &= ~0x0001;
immap->im_ioport.iop_pcdir &= ~0x0001;
immap->im_ioport.iop_pcso &= ~0x0001;
immap->im_ioport.iop_pcint |= 0x0001;
cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
/* Make LEDS reflect Link status.
*/
*((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
#endif
#ifdef PHY_INTERRUPT
((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |=
(0x80000000 >> PHY_INTERRUPT);
if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0)
panic("Could not allocate MII IRQ!");
#endif
dev->base_addr = (unsigned long)fecp;
/* The FEC Ethernet specific entries in the device structure. */
dev->open = fec_enet_open;
dev->hard_start_xmit = fec_enet_start_xmit;
dev->tx_timeout = fec_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = fec_enet_close;
dev->get_stats = fec_enet_get_stats;
dev->set_multicast_list = set_multicast_list;
#ifdef CONFIG_USE_MDIO
for (i=0; i<NMII-1; i++)
mii_cmds[i].mii_next = &mii_cmds[i+1];
mii_free = mii_cmds;
#endif /* CONFIG_USE_MDIO */
/* Configure all of port D for MII.
*/
immap->im_ioport.iop_pdpar = 0x1fff;
/* Bits moved from Rev. D onward.
*/
if ((mfspr(SPRN_IMMR) & 0xffff) < 0x0501)
immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
else
immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
#ifdef CONFIG_USE_MDIO
/* Set MII speed to 2.5 MHz
*/
fecp->fec_mii_speed = fep->phy_speed =
(( (bd->bi_intfreq + 500000) / 2500000 / 2 ) & 0x3F ) << 1;
#else
fecp->fec_mii_speed = 0; /* turn off MDIO */
#endif /* CONFIG_USE_MDIO */
err = register_netdev(dev);
if (err) {
free_netdev(dev);
return err;
}
printk ("%s: FEC ENET Version 0.2, FEC irq %d"
#ifdef PHY_INTERRUPT
", MII irq %d"
#endif
", addr ",
dev->name, FEC_INTERRUPT
#ifdef PHY_INTERRUPT
, PHY_INTERRUPT
#endif
);
for (i=0; i<6; i++)
printk("%02x%c", dev->dev_addr[i], (i==5) ? '\n' : ':');
#ifdef CONFIG_USE_MDIO /* start in full duplex mode, and negotiate speed */
fec_restart (dev, 1);
#else /* always use half duplex mode only */
fec_restart (dev, 0);
#endif
#ifdef CONFIG_USE_MDIO
/* Queue up command to detect the PHY and initialize the
* remainder of the interface.
*/
fep->phy_id_done = 0;
fep->phy_addr = 0;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
#endif /* CONFIG_USE_MDIO */
return 0;
}
module_init(fec_enet_init);
/* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
static void
fec_restart(struct net_device *dev, int duplex)
{
struct fec_enet_private *fep;
int i;
volatile cbd_t *bdp;
volatile immap_t *immap;
volatile fec_t *fecp;
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
fecp = &(immap->im_cpm.cp_fec);
fep = dev->priv;
/* Whack a reset. We should wait for this.
*/
fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
for (i = 0;
(fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
++i) {
udelay(1);
}
if (i == FEC_RESET_DELAY) {
printk ("FEC Reset timeout!\n");
}
/* Set station address.
*/
fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
fecp->fec_addr_high = my_enet_addr[2];
/* Reset all multicast.
*/
fecp->fec_hash_table_high = 0;
fecp->fec_hash_table_low = 0;
/* Set maximum receive buffer size.
*/
fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
fecp->fec_r_hash = PKT_MAXBUF_SIZE;
/* Set receive and transmit descriptor base.
*/
fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base));
fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base));
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->cur_rx = fep->rx_bd_base;
/* Reset SKB transmit buffers.
*/
fep->skb_cur = fep->skb_dirty = 0;
for (i=0; i<=TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i] != NULL) {
dev_kfree_skb(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
}
/* Initialize the receive buffer descriptors.
*/
bdp = fep->rx_bd_base;
for (i=0; i<RX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* ...and the same for transmit.
*/
bdp = fep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Enable MII mode.
*/
if (duplex) {
fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */
fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */
}
else {
fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT;
fecp->fec_x_cntrl = 0;
}
fep->full_duplex = duplex;
/* Enable big endian and don't care about SDMA FC.
*/
fecp->fec_fun_code = 0x78000000;
#ifdef CONFIG_USE_MDIO
/* Set MII speed.
*/
fecp->fec_mii_speed = fep->phy_speed;
#endif /* CONFIG_USE_MDIO */
/* Clear any outstanding interrupt.
*/
fecp->fec_ievent = 0xffc0;
fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
/* Enable interrupts we wish to service.
*/
fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII );
/* And last, enable the transmit and receive processing.
*/
fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
fecp->fec_r_des_active = 0x01000000;
}
static void
fec_stop(struct net_device *dev)
{
volatile immap_t *immap;
volatile fec_t *fecp;
struct fec_enet_private *fep;
int i;
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
fecp = &(immap->im_cpm.cp_fec);
if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0)
return; /* already down */
fep = dev->priv;
fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
for (i = 0;
((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY);
++i) {
udelay(1);
}
if (i == FEC_RESET_DELAY) {
printk ("FEC timeout on graceful transmit stop\n");
}
/* Clear outstanding MII command interrupts.
*/
fecp->fec_ievent = FEC_ENET_MII;
/* Enable MII command finished interrupt
*/
fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
fecp->fec_imask = FEC_ENET_MII;
#ifdef CONFIG_USE_MDIO
/* Set MII speed.
*/
fecp->fec_mii_speed = fep->phy_speed;
#endif /* CONFIG_USE_MDIO */
/* Disable FEC
*/
fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN);
}
|