summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/lib/qspinlock.c
blob: 86504628501e4e092f64aa5af97b8a29cae1593c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/atomic.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/smp.h>
#include <asm/qspinlock.h>

#define MAX_NODES	4

struct qnode {
	struct qnode	*next;
	struct qspinlock *lock;
	u8		locked; /* 1 if lock acquired */
};

struct qnodes {
	int		count;
	struct qnode nodes[MAX_NODES];
};

static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes);

static inline int encode_tail_cpu(int cpu)
{
	return (cpu + 1) << _Q_TAIL_CPU_OFFSET;
}

static inline int decode_tail_cpu(int val)
{
	return (val >> _Q_TAIL_CPU_OFFSET) - 1;
}

/*
 * Try to acquire the lock if it was not already locked. If the tail matches
 * mytail then clear it, otherwise leave it unchnaged. Return previous value.
 *
 * This is used by the head of the queue to acquire the lock and clean up
 * its tail if it was the last one queued.
 */
static __always_inline int set_locked_clean_tail(struct qspinlock *lock, int tail)
{
	int val = atomic_read(&lock->val);

	BUG_ON(val & _Q_LOCKED_VAL);

	/* If we're the last queued, must clean up the tail. */
	if ((val & _Q_TAIL_CPU_MASK) == tail) {
		if (atomic_cmpxchg_acquire(&lock->val, val, _Q_LOCKED_VAL) == val)
			return val;
		/* Another waiter must have enqueued */
		val = atomic_read(&lock->val);
		BUG_ON(val & _Q_LOCKED_VAL);
	}

	/* We must be the owner, just set the lock bit and acquire */
	atomic_or(_Q_LOCKED_VAL, &lock->val);
	__atomic_acquire_fence();

	return val;
}

/*
 * Publish our tail, replacing previous tail. Return previous value.
 *
 * This provides a release barrier for publishing node, this pairs with the
 * acquire barrier in get_tail_qnode() when the next CPU finds this tail
 * value.
 */
static __always_inline int publish_tail_cpu(struct qspinlock *lock, int tail)
{
	for (;;) {
		int val = atomic_read(&lock->val);
		int newval = (val & ~_Q_TAIL_CPU_MASK) | tail;
		int old;

		old = atomic_cmpxchg_release(&lock->val, val, newval);
		if (old == val)
			return old;
	}
}

static struct qnode *get_tail_qnode(struct qspinlock *lock, int val)
{
	int cpu = decode_tail_cpu(val);
	struct qnodes *qnodesp = per_cpu_ptr(&qnodes, cpu);
	int idx;

	/*
	 * After publishing the new tail and finding a previous tail in the
	 * previous val (which is the control dependency), this barrier
	 * orders the release barrier in publish_tail_cpu performed by the
	 * last CPU, with subsequently looking at its qnode structures
	 * after the barrier.
	 */
	smp_acquire__after_ctrl_dep();

	for (idx = 0; idx < MAX_NODES; idx++) {
		struct qnode *qnode = &qnodesp->nodes[idx];
		if (qnode->lock == lock)
			return qnode;
	}

	BUG();
}

static inline void queued_spin_lock_mcs_queue(struct qspinlock *lock)
{
	struct qnodes *qnodesp;
	struct qnode *next, *node;
	int val, old, tail;
	int idx;

	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));

	qnodesp = this_cpu_ptr(&qnodes);
	if (unlikely(qnodesp->count >= MAX_NODES)) {
		while (!queued_spin_trylock(lock))
			cpu_relax();
		return;
	}

	idx = qnodesp->count++;
	/*
	 * Ensure that we increment the head node->count before initialising
	 * the actual node. If the compiler is kind enough to reorder these
	 * stores, then an IRQ could overwrite our assignments.
	 */
	barrier();
	node = &qnodesp->nodes[idx];
	node->next = NULL;
	node->lock = lock;
	node->locked = 0;

	tail = encode_tail_cpu(smp_processor_id());

	old = publish_tail_cpu(lock, tail);

	/*
	 * If there was a previous node; link it and wait until reaching the
	 * head of the waitqueue.
	 */
	if (old & _Q_TAIL_CPU_MASK) {
		struct qnode *prev = get_tail_qnode(lock, old);

		/* Link @node into the waitqueue. */
		WRITE_ONCE(prev->next, node);

		/* Wait for mcs node lock to be released */
		while (!node->locked)
			cpu_relax();

		smp_rmb(); /* acquire barrier for the mcs lock */
	}

	/* We're at the head of the waitqueue, wait for the lock. */
	for (;;) {
		val = atomic_read(&lock->val);
		if (!(val & _Q_LOCKED_VAL))
			break;

		cpu_relax();
	}

	/* If we're the last queued, must clean up the tail. */
	old = set_locked_clean_tail(lock, tail);
	if ((old & _Q_TAIL_CPU_MASK) == tail)
		goto release; /* Another waiter must have enqueued */

	/* There is a next, must wait for node->next != NULL (MCS protocol) */
	while (!(next = READ_ONCE(node->next)))
		cpu_relax();

	/*
	 * Unlock the next mcs waiter node. Release barrier is not required
	 * here because the acquirer is only accessing the lock word, and
	 * the acquire barrier we took the lock with orders that update vs
	 * this store to locked. The corresponding barrier is the smp_rmb()
	 * acquire barrier for mcs lock, above.
	 */
	WRITE_ONCE(next->locked, 1);

release:
	qnodesp->count--; /* release the node */
}

void queued_spin_lock_slowpath(struct qspinlock *lock)
{
	queued_spin_lock_mcs_queue(lock);
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);

#ifdef CONFIG_PARAVIRT_SPINLOCKS
void pv_spinlocks_init(void)
{
}
#endif