summaryrefslogtreecommitdiffstats
path: root/arch/parisc/kernel/kprobes.c
blob: e2bdb5a5f93e9f951d083719b28f8e025ef7dd24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// SPDX-License-Identifier: GPL-2.0
/*
 * arch/parisc/kernel/kprobes.c
 *
 * PA-RISC kprobes implementation
 *
 * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
 */

#include <linux/types.h>
#include <linux/kprobes.h>
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <asm/patch.h>

DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
	if ((unsigned long)p->addr & 3UL)
		return -EINVAL;

	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;

	memcpy(p->ainsn.insn, p->addr,
		MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
	p->opcode = *p->addr;
	flush_insn_slot(p);
	return 0;
}

void __kprobes arch_remove_kprobe(struct kprobe *p)
{
	if (!p->ainsn.insn)
		return;

	free_insn_slot(p->ainsn.insn, 0);
	p->ainsn.insn = NULL;
}

void __kprobes arch_arm_kprobe(struct kprobe *p)
{
	patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
}

void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
	patch_text(p->addr, p->opcode);
}

static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
}

static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
	kcb->kprobe_status = kcb->prev_kprobe.status;
}

static inline void __kprobes set_current_kprobe(struct kprobe *p)
{
	__this_cpu_write(current_kprobe, p);
}

static void __kprobes setup_singlestep(struct kprobe *p,
		struct kprobe_ctlblk *kcb, struct pt_regs *regs)
{
	kcb->iaoq[0] = regs->iaoq[0];
	kcb->iaoq[1] = regs->iaoq[1];
	regs->iaoq[0] = (unsigned long)p->ainsn.insn;
	mtctl(0, 0);
	regs->gr[0] |= PSW_R;
}

int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	struct kprobe_ctlblk *kcb;

	preempt_disable();

	kcb = get_kprobe_ctlblk();
	p = get_kprobe((unsigned long *)regs->iaoq[0]);

	if (!p) {
		preempt_enable_no_resched();
		return 0;
	}

	if (kprobe_running()) {
		/*
		 * We have reentered the kprobe_handler, since another kprobe
		 * was hit while within the handler, we save the original
		 * kprobes and single step on the instruction of the new probe
		 * without calling any user handlers to avoid recursive
		 * kprobes.
		 */
		save_previous_kprobe(kcb);
		set_current_kprobe(p);
		kprobes_inc_nmissed_count(p);
		setup_singlestep(p, kcb, regs);
		kcb->kprobe_status = KPROBE_REENTER;
		return 1;
	}

	set_current_kprobe(p);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;

	/* If we have no pre-handler or it returned 0, we continue with
	 * normal processing. If we have a pre-handler and it returned
	 * non-zero - which means user handler setup registers to exit
	 * to another instruction, we must skip the single stepping.
	 */

	if (!p->pre_handler || !p->pre_handler(p, regs)) {
		setup_singlestep(p, kcb, regs);
		kcb->kprobe_status = KPROBE_HIT_SS;
	} else {
		reset_current_kprobe();
		preempt_enable_no_resched();
	}
	return 1;
}

int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	struct kprobe *p = kprobe_running();

	if (!p)
		return 0;

	if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
		return 0;

	/* restore back original saved kprobe variables and continue */
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
		return 1;
	}

	/* for absolute branch instructions we can copy iaoq_b. for relative
	 * branch instructions we need to calculate the new address based on the
	 * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
	 * modificationt because it's based on our ainsn.insn address.
	 */

	if (p->post_handler)
		p->post_handler(p, regs, 0);

	switch (regs->iir >> 26) {
	case 0x38: /* BE */
	case 0x39: /* BE,L */
	case 0x3a: /* BV */
	case 0x3b: /* BVE */
		/* for absolute branches, regs->iaoq[1] has already the right
		 * address
		 */
		regs->iaoq[0] = kcb->iaoq[1];
		break;
	default:
		regs->iaoq[1] = kcb->iaoq[0];
		regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4;
		regs->iaoq[0] = kcb->iaoq[1];
		break;
	}
	kcb->kprobe_status = KPROBE_HIT_SSDONE;
	reset_current_kprobe();
	return 1;
}

void __kretprobe_trampoline(void)
{
	asm volatile("nop");
	asm volatile("nop");
}

static int __kprobes trampoline_probe_handler(struct kprobe *p,
					      struct pt_regs *regs);

static struct kprobe trampoline_p = {
	.pre_handler = trampoline_probe_handler
};

static int __kprobes trampoline_probe_handler(struct kprobe *p,
					      struct pt_regs *regs)
{
	unsigned long orig_ret_address;

	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
	instruction_pointer_set(regs, orig_ret_address);

	return 1;
}

void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
				      struct pt_regs *regs)
{
	ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
	ri->fp = NULL;

	/* Replace the return addr with trampoline addr. */
	regs->gr[2] = (unsigned long)trampoline_p.addr;
}

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	return p->addr == trampoline_p.addr;
}

int __init arch_init_kprobes(void)
{
	trampoline_p.addr = (kprobe_opcode_t *)
		dereference_function_descriptor(__kretprobe_trampoline);
	return register_kprobe(&trampoline_p);
}