summaryrefslogtreecommitdiffstats
path: root/include/linux/stackleak.h
AgeCommit message (Collapse)AuthorFilesLines
2022-05-08stackleak: rework poison scanningMark Rutland1-0/+26
Currently we over-estimate the region of stack which must be erased. To determine the region to be erased, we scan downwards for a contiguous block of poison values (or the low bound of the stack). There are a few minor problems with this today: * When we find a block of poison values, we include this block within the region to erase. As this is included within the region to erase, this causes us to redundantly overwrite 'STACKLEAK_SEARCH_DEPTH' (128) bytes with poison. * As the loop condition checks 'poison_count <= depth', it will run an additional iteration after finding the contiguous block of poison, decrementing 'erase_low' once more than necessary. As this is included within the region to erase, this causes us to redundantly overwrite an additional unsigned long with poison. * As we always decrement 'erase_low' after checking an element on the stack, we always include the element below this within the region to erase. As this is included within the region to erase, this causes us to redundantly overwrite an additional unsigned long with poison. Note that this is not a functional problem. As the loop condition checks 'erase_low > task_stack_low', we'll never clobber the STACK_END_MAGIC. As we always decrement 'erase_low' after this, we'll never fail to erase the element immediately above the STACK_END_MAGIC. In total, this can cause us to erase `128 + 2 * sizeof(unsigned long)` bytes more than necessary, which is unfortunate. This patch reworks the logic to find the address immediately above the poisoned region, by finding the lowest non-poisoned address. This is factored into a stackleak_find_top_of_poison() helper both for clarity and so that this can be shared with the LKDTM test in subsequent patches. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220427173128.2603085-8-mark.rutland@arm.com
2022-05-08stackleak: rework stack high bound handlingMark Rutland1-0/+14
Prior to returning to userspace, we reset current->lowest_stack to a reasonable high bound. Currently we do this by subtracting the arbitrary value `THREAD_SIZE/64` from the top of the stack, for reasons lost to history. Looking at configurations today: * On i386 where THREAD_SIZE is 8K, the bound will be 128 bytes. The pt_regs at the top of the stack is 68 bytes (with 0 to 16 bytes of padding above), and so this covers an additional portion of 44 to 60 bytes. * On x86_64 where THREAD_SIZE is at least 16K (up to 32K with KASAN) the bound will be at least 256 bytes (up to 512 with KASAN). The pt_regs at the top of the stack is 168 bytes, and so this cover an additional 88 bytes of stack (up to 344 with KASAN). * On arm64 where THREAD_SIZE is at least 16K (up to 64K with 64K pages and VMAP_STACK), the bound will be at least 256 bytes (up to 1024 with KASAN). The pt_regs at the top of the stack is 336 bytes, so this can fall within the pt_regs, or can cover an additional 688 bytes of stack. Clearly the `THREAD_SIZE/64` value doesn't make much sense -- in the worst case, this will cause more than 600 bytes of stack to be erased for every syscall, even if actual stack usage were substantially smaller. This patches makes this slightly less nonsensical by consistently resetting current->lowest_stack to the base of the task pt_regs. For clarity and for consistency with the handling of the low bound, the generation of the high bound is split into a helper with commentary explaining why. Since the pt_regs at the top of the stack will be clobbered upon the next exception entry, we don't need to poison these at exception exit. By using task_pt_regs() as the high stack boundary instead of current_top_of_stack() we avoid some redundant poisoning, and the compiler can share the address generation between the poisoning and resetting of `current->lowest_stack`, making the generated code more optimal. It's not clear to me whether the existing `THREAD_SIZE/64` offset was a dodgy heuristic to skip the pt_regs, or whether it was attempting to minimize the number of times stackleak_check_stack() would have to update `current->lowest_stack` when stack usage was shallow at the cost of unconditionally poisoning a small portion of the stack for every exit to userspace. For now I've simply removed the offset, and if we need/want to minimize updates for shallow stack usage it should be easy to add a better heuristic atop, with appropriate commentary so we know what's going on. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220427173128.2603085-7-mark.rutland@arm.com
2022-05-08stackleak: rework stack low bound handlingMark Rutland1-1/+14
In stackleak_task_init(), stackleak_track_stack(), and __stackleak_erase(), we open-code skipping the STACK_END_MAGIC at the bottom of the stack. Each case is implemented slightly differently, and only the __stackleak_erase() case is commented. In stackleak_task_init() and stackleak_track_stack() we unconditionally add sizeof(unsigned long) to the lowest stack address. In stackleak_task_init() we use end_of_stack() for this, and in stackleak_track_stack() we use task_stack_page(). In __stackleak_erase() we handle this by detecting if `kstack_ptr` has hit the stack end boundary, and if so, conditionally moving it above the magic. This patch adds a new stackleak_task_low_bound() helper which is used in all three cases, which unconditionally adds sizeof(unsigned long) to the lowest address on the task stack, with commentary as to why. This uses end_of_stack() as stackleak_task_init() did prior to this patch, as this is consistent with the code in kernel/fork.c which initializes the STACK_END_MAGIC value. In __stackleak_erase() we no longer need to check whether we've spilled into the STACK_END_MAGIC value, as stackleak_track_stack() ensures that `current->lowest_stack` stops immediately above this, and similarly the poison scan will stop immediately above this. For stackleak_task_init() and stackleak_track_stack() this results in no change to code generation. For __stackleak_erase() the generated assembly is slightly simpler and shorter. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220427173128.2603085-5-mark.rutland@arm.com
2022-01-22stackleak: move stack_erasing sysctl to stackleak.cXiaoming Ni1-5/+0
kernel/sysctl.c is a kitchen sink where everyone leaves their dirty dishes, this makes it very difficult to maintain. To help with this maintenance let's start by moving sysctls to places where they actually belong. The proc sysctl maintainers do not want to know what sysctl knobs you wish to add for your own piece of code, we just care about the core logic. So move the stack_erasing sysctl from kernel/sysctl.c to kernel/stackleak.c and use register_sysctl() to register the sysctl interface. [mcgrof@kernel.org: commit log update] Link: https://lkml.kernel.org/r/20211124231435.1445213-8-mcgrof@kernel.org Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Antti Palosaari <crope@iki.fi> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Clemens Ladisch <clemens@ladisch.de> Cc: David Airlie <airlied@linux.ie> Cc: Douglas Gilbert <dgilbert@interlog.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: James E.J. Bottomley <jejb@linux.ibm.com> Cc: Jani Nikula <jani.nikula@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Joel Becker <jlbec@evilplan.org> Cc: John Ogness <john.ogness@linutronix.de> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Julia Lawall <julia.lawall@inria.fr> Cc: Kees Cook <keescook@chromium.org> Cc: Lukas Middendorf <kernel@tuxforce.de> Cc: Mark Fasheh <mark@fasheh.com> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Phillip Potter <phil@philpotter.co.uk> Cc: Qing Wang <wangqing@vivo.com> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Sebastian Reichel <sre@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Stephen Kitt <steve@sk2.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19stackleak: let stack_erasing_sysctl take a kernel pointer bufferTobias Klauser1-1/+1
Commit 32927393dc1c ("sysctl: pass kernel pointers to ->proc_handler") changed ctl_table.proc_handler to take a kernel pointer. Adjust the signature of stack_erasing_sysctl to match ctl_table.proc_handler which fixes the following sparse warning: kernel/stackleak.c:31:50: warning: incorrect type in argument 3 (different address spaces) kernel/stackleak.c:31:50: expected void * kernel/stackleak.c:31:50: got void [noderef] __user *buffer Fixes: 32927393dc1c ("sysctl: pass kernel pointers to ->proc_handler") Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Link: https://lkml.kernel.org/r/20200907093253.13656-1-tklauser@distanz.ch Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-04stackleak: Allow runtime disabling of kernel stack erasingAlexander Popov1-0/+6
Introduce CONFIG_STACKLEAK_RUNTIME_DISABLE option, which provides 'stack_erasing' sysctl. It can be used in runtime to control kernel stack erasing for kernels built with CONFIG_GCC_PLUGIN_STACKLEAK. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Alexander Popov <alex.popov@linux.com> Tested-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04fs/proc: Show STACKLEAK metrics in the /proc file systemAlexander Popov1-0/+3
Introduce CONFIG_STACKLEAK_METRICS providing STACKLEAK information about tasks via the /proc file system. In particular, /proc/<pid>/stack_depth shows the maximum kernel stack consumption for the current and previous syscalls. Although this information is not precise, it can be useful for estimating the STACKLEAK performance impact for your workloads. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Alexander Popov <alex.popov@linux.com> Tested-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscallsAlexander Popov1-0/+26
The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>