Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI fixes from Ard Biesheuvel:
- Force the use of SetVirtualAddressMap() on Ampera Altra arm64
machines, which crash in SetTime() if no virtual remapping is used
This is the first time we've added an SMBIOS based quirk on arm64,
but fortunately, we can just call a EFI protocol to grab the type #1
SMBIOS record when running in the stub, so we don't need all the
machinery we have in the kernel proper to parse SMBIOS data.
- Drop a spurious warning on misaligned runtime regions when using 16k
or 64k pages on arm64
* tag 'efi-fixes-for-v6.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
arm64: efi: Fix handling of misaligned runtime regions and drop warning
arm64: efi: Force the use of SetVirtualAddressMap() on Altra machines
|
|
Currently, when mapping the EFI runtime regions in the EFI page tables,
we complain about misaligned regions in a rather noisy way, using
WARN().
Not only does this produce a lot of irrelevant clutter in the log, it is
factually incorrect, as misaligned runtime regions are actually allowed
by the EFI spec as long as they don't require conflicting memory types
within the same 64k page.
So let's drop the warning, and tweak the code so that we
- take both the start and end of the region into account when checking
for misalignment
- only revert to RWX mappings for non-code regions if misaligned code
regions are also known to exist.
Cc: <stable@vger.kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Avoid kprobe recursion when cortex_a76_erratum_1463225_debug_handler()
is not inlined (change to __always_inline).
- Fix the visibility of compat hwcaps, broken by recent changes to
consolidate the visibility of hwcaps and the user-space view of the
ID registers.
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: cpufeature: Fix the visibility of compat hwcaps
arm64: entry: avoid kprobe recursion
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI fixes from Ard Biesheuvel:
- A pair of tweaks to the EFI random seed code so that externally
provided version of this config table are handled more robustly
- Another fix for the v6.0 EFI variable refactor that turned out to
break Apple machines which don't provide QueryVariableInfo()
- Add some guard rails to the EFI runtime service call wrapper so we
can recover from synchronous exceptions caused by firmware
* tag 'efi-fixes-for-v6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
arm64: efi: Recover from synchronous exceptions occurring in firmware
efi: efivars: Fix variable writes with unsupported query_variable_store()
efi: random: Use 'ACPI reclaim' memory for random seed
efi: random: reduce seed size to 32 bytes
efi/tpm: Pass correct address to memblock_reserve
|
|
Commit 237405ebef58 ("arm64: cpufeature: Force HWCAP to be based on the
sysreg visible to user-space") forced the hwcaps to use sanitised
user-space view of the id registers. However, the ID register structures
used to select few compat cpufeatures (vfp, crc32, ...) are masked and
hence such hwcaps do not appear in /proc/cpuinfo anymore for PER_LINUX32
personality.
Add the ID register structures explicitly and set the relevant entry as
visible. As these ID registers are now of type visible so make them
available in 64-bit userspace by making necessary changes in register
emulation logic and documentation.
While at it, update the comment for structure ftr_generic_32bits[] which
lists the ID register that use it.
Fixes: 237405ebef58 ("arm64: cpufeature: Force HWCAP to be based on the sysreg visible to user-space")
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Link: https://lore.kernel.org/r/20221103082232.19189-1-amit.kachhap@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Unlike x86, which has machinery to deal with page faults that occur
during the execution of EFI runtime services, arm64 has nothing like
that, and a synchronous exception raised by firmware code brings down
the whole system.
With more EFI based systems appearing that were not built to run Linux
(such as the Windows-on-ARM laptops based on Qualcomm SOCs), as well as
the introduction of PRM (platform specific firmware routines that are
callable just like EFI runtime services), we are more likely to run into
issues of this sort, and it is much more likely that we can identify and
work around such issues if they don't bring down the system entirely.
Since we already use a EFI runtime services call wrapper in assembler,
we can quite easily add some code that captures the execution state at
the point where the call is made, allowing us to revert to this state
and proceed execution if the call triggered a synchronous exception.
Given that the kernel and the firmware don't share any data structures
that could end up in an indeterminate state, we can happily continue
running, as long as we mark the EFI runtime services as unavailable from
that point on.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The cortex_a76_erratum_1463225_debug_handler() function is called when
handling debug exceptions (and synchronous exceptions from BRK
instructions), and so is called when a probed function executes. If the
compiler does not inline cortex_a76_erratum_1463225_debug_handler(), it
can be probed.
If cortex_a76_erratum_1463225_debug_handler() is probed, any debug
exception or software breakpoint exception will result in recursive
exceptions leading to a stack overflow. This can be triggered with the
ftrace multiple_probes selftest, and as per the example splat below.
This is a regression caused by commit:
6459b8469753e9fe ("arm64: entry: consolidate Cortex-A76 erratum 1463225 workaround")
... which removed the NOKPROBE_SYMBOL() annotation associated with the
function.
My intent was that cortex_a76_erratum_1463225_debug_handler() would be
inlined into its caller, el1_dbg(), which is marked noinstr and cannot
be probed. Mark cortex_a76_erratum_1463225_debug_handler() as
__always_inline to ensure this.
Example splat prior to this patch (with recursive entries elided):
| # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events
| # echo p do_el0_svc >> /sys/kernel/debug/tracing/kprobe_events
| # echo 1 > /sys/kernel/debug/tracing/events/kprobes/enable
| Insufficient stack space to handle exception!
| ESR: 0x0000000096000047 -- DABT (current EL)
| FAR: 0xffff800009cefff0
| Task stack: [0xffff800009cf0000..0xffff800009cf4000]
| IRQ stack: [0xffff800008000000..0xffff800008004000]
| Overflow stack: [0xffff00007fbc00f0..0xffff00007fbc10f0]
| CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2
| Hardware name: linux,dummy-virt (DT)
| pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : arm64_enter_el1_dbg+0x4/0x20
| lr : el1_dbg+0x24/0x5c
| sp : ffff800009cf0000
| x29: ffff800009cf0000 x28: ffff000002c74740 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 00000000604003c5 x22: ffff80000801745c x21: 0000aaaac95ac068
| x20: 00000000f2000004 x19: ffff800009cf0040 x18: 0000000000000000
| x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
| x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
| x11: 0000000000000010 x10: ffff800008c87190 x9 : ffff800008ca00d0
| x8 : 000000000000003c x7 : 0000000000000000 x6 : 0000000000000000
| x5 : 0000000000000000 x4 : 0000000000000000 x3 : 00000000000043a4
| x2 : 00000000f2000004 x1 : 00000000f2000004 x0 : ffff800009cf0040
| Kernel panic - not syncing: kernel stack overflow
| CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0xe4/0x104
| show_stack+0x18/0x4c
| dump_stack_lvl+0x64/0x7c
| dump_stack+0x18/0x38
| panic+0x14c/0x338
| test_taint+0x0/0x2c
| panic_bad_stack+0x104/0x118
| handle_bad_stack+0x34/0x48
| __bad_stack+0x78/0x7c
| arm64_enter_el1_dbg+0x4/0x20
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
...
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
...
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| do_el0_svc+0x0/0x28
| el0t_64_sync_handler+0x84/0xf0
| el0t_64_sync+0x18c/0x190
| Kernel Offset: disabled
| CPU features: 0x0080,00005021,19001080
| Memory Limit: none
| ---[ end Kernel panic - not syncing: kernel stack overflow ]---
With this patch, cortex_a76_erratum_1463225_debug_handler() is inlined
into el1_dbg(), and el1_dbg() cannot be probed:
| # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events
| sh: write error: No such file or directory
| # grep -w cortex_a76_erratum_1463225_debug_handler /proc/kallsyms | wc -l
| 0
| # echo p el1_dbg > /sys/kernel/debug/tracing/kprobe_events
| sh: write error: Invalid argument
| # grep -w el1_dbg /proc/kallsyms | wc -l
| 1
Fixes: 6459b8469753 ("arm64: entry: consolidate Cortex-A76 erratum 1463225 workaround")
Cc: <stable@vger.kernel.org> # 5.12.x
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20221017090157.2881408-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Different function signatures means they needs to be different
functions; otherwise CFI gets upset.
As triggered by the ftrace boot tests:
[] CFI failure at ftrace_return_to_handler+0xac/0x16c (target: ftrace_stub+0x0/0x14; expected type: 0x0a5d5347)
Fixes: 3c516f89e17e ("x86: Add support for CONFIG_CFI_CLANG")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/Y06dg4e1xF6JTdQq@hirez.programming.kicks-ass.net
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull more random number generator updates from Jason Donenfeld:
"This time with some large scale treewide cleanups.
The intent of this pull is to clean up the way callers fetch random
integers. The current rules for doing this right are:
- If you want a secure or an insecure random u64, use get_random_u64()
- If you want a secure or an insecure random u32, use get_random_u32()
The old function prandom_u32() has been deprecated for a while
now and is just a wrapper around get_random_u32(). Same for
get_random_int().
- If you want a secure or an insecure random u16, use get_random_u16()
- If you want a secure or an insecure random u8, use get_random_u8()
- If you want secure or insecure random bytes, use get_random_bytes().
The old function prandom_bytes() has been deprecated for a while
now and has long been a wrapper around get_random_bytes()
- If you want a non-uniform random u32, u16, or u8 bounded by a
certain open interval maximum, use prandom_u32_max()
I say "non-uniform", because it doesn't do any rejection sampling
or divisions. Hence, it stays within the prandom_*() namespace, not
the get_random_*() namespace.
I'm currently investigating a "uniform" function for 6.2. We'll see
what comes of that.
By applying these rules uniformly, we get several benefits:
- By using prandom_u32_max() with an upper-bound that the compiler
can prove at compile-time is ≤65536 or ≤256, internally
get_random_u16() or get_random_u8() is used, which wastes fewer
batched random bytes, and hence has higher throughput.
- By using prandom_u32_max() instead of %, when the upper-bound is
not a constant, division is still avoided, because
prandom_u32_max() uses a faster multiplication-based trick instead.
- By using get_random_u16() or get_random_u8() in cases where the
return value is intended to indeed be a u16 or a u8, we waste fewer
batched random bytes, and hence have higher throughput.
This series was originally done by hand while I was on an airplane
without Internet. Later, Kees and I worked on retroactively figuring
out what could be done with Coccinelle and what had to be done
manually, and then we split things up based on that.
So while this touches a lot of files, the actual amount of code that's
hand fiddled is comfortably small"
* tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random:
prandom: remove unused functions
treewide: use get_random_bytes() when possible
treewide: use get_random_u32() when possible
treewide: use get_random_{u8,u16}() when possible, part 2
treewide: use get_random_{u8,u16}() when possible, part 1
treewide: use prandom_u32_max() when possible, part 2
treewide: use prandom_u32_max() when possible, part 1
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Cortex-A55 errata workaround (repeat TLBI)
- AMPERE1 added to the Spectre-BHB affected list
- MTE fix to avoid setting PG_mte_tagged if no tags have been touched
on a page
- Fixed typo in the SCTLR_EL1.SPINTMASK bit naming (the commit log has
other typos)
- perf: return value check in ali_drw_pmu_probe(),
ALIBABA_UNCORE_DRW_PMU dependency on ACPI
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Add AMPERE1 to the Spectre-BHB affected list
arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored
MAINTAINERS: rectify file entry in ALIBABA PMU DRIVER
drivers/perf: ALIBABA_UNCORE_DRW_PMU should depend on ACPI
drivers/perf: fix return value check in ali_drw_pmu_probe()
arm64: errata: Add Cortex-A55 to the repeat tlbi list
arm64/sysreg: Fix typo in SCTR_EL1.SPINTMASK
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- hfs and hfsplus kmap API modernization (Fabio Francesco)
- make crash-kexec work properly when invoked from an NMI-time panic
(Valentin Schneider)
- ntfs bugfixes (Hawkins Jiawei)
- improve IPC msg scalability by replacing atomic_t's with percpu
counters (Jiebin Sun)
- nilfs2 cleanups (Minghao Chi)
- lots of other single patches all over the tree!
* tag 'mm-nonmm-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (71 commits)
include/linux/entry-common.h: remove has_signal comment of arch_do_signal_or_restart() prototype
proc: test how it holds up with mapping'less process
mailmap: update Frank Rowand email address
ia64: mca: use strscpy() is more robust and safer
init/Kconfig: fix unmet direct dependencies
ia64: update config files
nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure
fork: remove duplicate included header files
init/main.c: remove unnecessary (void*) conversions
proc: mark more files as permanent
nilfs2: remove the unneeded result variable
nilfs2: delete unnecessary checks before brelse()
checkpatch: warn for non-standard fixes tag style
usr/gen_init_cpio.c: remove unnecessary -1 values from int file
ipc/msg: mitigate the lock contention with percpu counter
percpu: add percpu_counter_add_local and percpu_counter_sub_local
fs/ocfs2: fix repeated words in comments
relay: use kvcalloc to alloc page array in relay_alloc_page_array
proc: make config PROC_CHILDREN depend on PROC_FS
fs: uninline inode_maybe_inc_iversion()
...
|
|
Per AmpereOne erratum AC03_CPU_12, "Branch history may allow control of
speculative execution across software contexts," the AMPERE1 core needs the
bhb clearing loop to mitigate Spectre-BHB, with a loop iteration count of
11.
Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com>
Link: https://lore.kernel.org/r/20221011022140.432370-1-scott@os.amperecomputing.com
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE
is untagged"), mte_sync_tags() was only called for pte_tagged() entries
(those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use
test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently
setting PG_mte_tagged on an untagged page.
The above commit was required as guests may enable MTE without any
control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM.
However, the side-effect was that any page with a PTE that looked like
swap (or migration) was getting PG_mte_tagged set automatically. A
subsequent page copy (e.g. migration) copied the tags to the destination
page even if the tags were owned by KASAN.
This issue was masked by the page_kasan_tag_reset() call introduced in
commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags").
When this commit was reverted (20794545c146), KASAN started reporting
access faults because the overriding tags in a page did not match the
original page->flags (with CONFIG_KASAN_HW_TAGS=y):
BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26
Read at addr f5ff000017f2e000 by task syz-executor.1/2218
Pointer tag: [f5], memory tag: [f2]
Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual
place where tags are cleared (mte_sync_page_tags()) or restored
(mte_restore_tags()).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: syzbot+c2c79c6d6eddc5262b77@syzkaller.appspotmail.com
Fixes: 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE is untagged")
Cc: <stable@vger.kernel.org> # 5.14.x
Cc: Steven Price <steven.price@arm.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/0000000000004387dc05e5888ae5@google.com/
Reviewed-by: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20221006163354.3194102-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Rather than truncate a 32-bit value to a 16-bit value or an 8-bit value,
simply use the get_random_{u8,u16}() functions, which are faster than
wasting the additional bytes from a 32-bit value. This was done
mechanically with this coccinelle script:
@@
expression E;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u16;
typedef __be16;
typedef __le16;
typedef u8;
@@
(
- (get_random_u32() & 0xffff)
+ get_random_u16()
|
- (get_random_u32() & 0xff)
+ get_random_u8()
|
- (get_random_u32() % 65536)
+ get_random_u16()
|
- (get_random_u32() % 256)
+ get_random_u8()
|
- (get_random_u32() >> 16)
+ get_random_u16()
|
- (get_random_u32() >> 24)
+ get_random_u8()
|
- (u16)get_random_u32()
+ get_random_u16()
|
- (u8)get_random_u32()
+ get_random_u8()
|
- (__be16)get_random_u32()
+ (__be16)get_random_u16()
|
- (__le16)get_random_u32()
+ (__le16)get_random_u16()
|
- prandom_u32_max(65536)
+ get_random_u16()
|
- prandom_u32_max(256)
+ get_random_u8()
|
- E->inet_id = get_random_u32()
+ E->inet_id = get_random_u16()
)
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u16;
identifier v;
@@
- u16 v = get_random_u32();
+ u16 v = get_random_u16();
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u8;
identifier v;
@@
- u8 v = get_random_u32();
+ u8 v = get_random_u8();
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u16;
u16 v;
@@
- v = get_random_u32();
+ v = get_random_u16();
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u8;
u8 v;
@@
- v = get_random_u32();
+ v = get_random_u8();
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Examine limits
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value < 256:
coccinelle.RESULT = cocci.make_ident("get_random_u8")
elif value < 65536:
coccinelle.RESULT = cocci.make_ident("get_random_u16")
else:
print("Skipping large mask of %s" % (literal))
cocci.include_match(False)
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
identifier add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ (RESULT() & LITERAL)
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Remove potentially incomplete targets when Kbuid is interrupted by
SIGINT etc in case GNU Make may miss to do that when stderr is piped
to another program.
- Rewrite the single target build so it works more correctly.
- Fix rpm-pkg builds with V=1.
- List top-level subdirectories in ./Kbuild.
- Ignore auto-generated __kstrtab_* and __kstrtabns_* symbols in
kallsyms.
- Avoid two different modules in lib/zstd/ having shared code, which
potentially causes building the common code as build-in and modular
back-and-forth.
- Unify two modpost invocations to optimize the build process.
- Remove head-y syntax in favor of linker scripts for placing
particular sections in the head of vmlinux.
- Bump the minimal GNU Make version to 3.82.
- Clean up misc Makefiles and scripts.
* tag 'kbuild-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (41 commits)
docs: bump minimal GNU Make version to 3.82
ia64: simplify esi object addition in Makefile
Revert "kbuild: Check if linker supports the -X option"
kbuild: rebuild .vmlinux.export.o when its prerequisite is updated
kbuild: move modules.builtin(.modinfo) rules to Makefile.vmlinux_o
zstd: Fixing mixed module-builtin objects
kallsyms: ignore __kstrtab_* and __kstrtabns_* symbols
kallsyms: take the input file instead of reading stdin
kallsyms: drop duplicated ignore patterns from kallsyms.c
kbuild: reuse mksysmap output for kallsyms
mksysmap: update comment about __crc_*
kbuild: remove head-y syntax
kbuild: use obj-y instead extra-y for objects placed at the head
kbuild: hide error checker logs for V=1 builds
kbuild: re-run modpost when it is updated
kbuild: unify two modpost invocations
kbuild: move vmlinux.o rule to the top Makefile
kbuild: move .vmlinux.objs rule to Makefile.modpost
kbuild: list sub-directories in ./Kbuild
Makefile.compiler: replace cc-ifversion with compiler-specific macros
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Improvements to the CPU topology subsystem, which fix some issues
where RISC-V would report bad topology information.
- The default NR_CPUS has increased to XLEN, and the maximum
configurable value is 512.
- The CD-ROM filesystems have been enabled in the defconfig.
- Support for THP_SWAP has been added for rv64 systems.
There are also a handful of cleanups and fixes throughout the tree.
* tag 'riscv-for-linus-6.1-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
riscv: enable THP_SWAP for RV64
RISC-V: Print SSTC in canonical order
riscv: compat: s/failed/unsupported if compat mode isn't supported
RISC-V: Increase range and default value of NR_CPUS
cpuidle: riscv-sbi: Fix CPU_PM_CPU_IDLE_ENTER_xyz() macro usage
perf: RISC-V: throttle perf events
perf: RISC-V: exclude invalid pmu counters from SBI calls
riscv: enable CD-ROM file systems in defconfig
riscv: topology: fix default topology reporting
arm64: topology: move store_cpu_topology() to shared code
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"A bit more going on than usual in the EFI subsystem. The main driver
for this has been the introduction of the LoonArch architecture last
cycle, which inspired some cleanup and refactoring of the EFI code.
Another driver for EFI changes this cycle and in the future is
confidential compute.
The LoongArch architecture does not use either struct bootparams or DT
natively [yet], and so passing information between the EFI stub and
the core kernel using either of those is undesirable. And in general,
overloading DT has been a source of issues on arm64, so using DT for
this on new architectures is a to avoid for the time being (even if we
might converge on something DT based for non-x86 architectures in the
future). For this reason, in addition to the patch that enables EFI
boot for LoongArch, there are a number of refactoring patches applied
on top of which separate the DT bits from the generic EFI stub bits.
These changes are on a separate topich branch that has been shared
with the LoongArch maintainers, who will include it in their pull
request as well. This is not ideal, but the best way to manage the
conflicts without stalling LoongArch for another cycle.
Another development inspired by LoongArch is the newly added support
for EFI based decompressors. Instead of adding yet another
arch-specific incarnation of this pattern for LoongArch, we are
introducing an EFI app based on the existing EFI libstub
infrastructure that encapulates the decompression code we use on other
architectures, but in a way that is fully generic. This has been
developed and tested in collaboration with distro and systemd folks,
who are eager to start using this for systemd-boot and also for arm64
secure boot on Fedora. Note that the EFI zimage files this introduces
can also be decompressed by non-EFI bootloaders if needed, as the
image header describes the location of the payload inside the image,
and the type of compression that was used. (Note that Fedora's arm64
GRUB is buggy [0] so you'll need a recent version or switch to
systemd-boot in order to use this.)
Finally, we are adding TPM measurement of the kernel command line
provided by EFI. There is an oversight in the TCG spec which results
in a blind spot for command line arguments passed to loaded images,
which means that either the loader or the stub needs to take the
measurement. Given the combinatorial explosion I am anticipating when
it comes to firmware/bootloader stacks and firmware based attestation
protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now
when it comes to EFI measured boot, which is that the kernel measures
the initrd and command line. Intermediate loaders can measure
additional assets if needed, but with the baseline in place, we can
deploy measured boot in a meaningful way even if you boot into Linux
straight from the EFI firmware.
Summary:
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured
size of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables"
* tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
efi/arm64: libstub: avoid SetVirtualAddressMap() when possible
efi: zboot: create MemoryMapped() device path for the parent if needed
efi: libstub: fix up the last remaining open coded boot service call
efi/arm: libstub: move ARM specific code out of generic routines
efi/libstub: measure EFI LoadOptions
efi/libstub: refactor the initrd measuring functions
efi/loongarch: libstub: remove dependency on flattened DT
efi: libstub: install boot-time memory map as config table
efi: libstub: remove DT dependency from generic stub
efi: libstub: unify initrd loading between architectures
efi: libstub: remove pointless goto kludge
efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap
efi: libstub: avoid efi_get_memory_map() for allocating the virt map
efi: libstub: drop pointless get_memory_map() call
efi: libstub: fix type confusion for load_options_size
arm64: efi: enable generic EFI compressed boot
loongarch: efi: enable generic EFI compressed boot
riscv: efi: enable generic EFI compressed boot
efi/libstub: implement generic EFI zboot
efi/libstub: move efi_system_table global var into separate object
...
|
|
Cortex-A55 is affected by an erratum where in rare circumstances the
CPUs may not handle a race between a break-before-make sequence on one
CPU, and another CPU accessing the same page. This could allow a store
to a page that has been unmapped.
Work around this by adding the affected CPUs to the list that needs
TLB sequences to be done twice.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220930131959.3082594-1-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI
documentation to match the actual kernel behaviour (zeroing the
registers on syscall rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC
exception handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include
larger SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (126 commits)
arm64: alternatives: Use vdso/bits.h instead of linux/bits.h
arm64/kprobe: Optimize the performance of patching single-step slot
arm64: defconfig: Add Coresight as module
kselftest/arm64: Handle EINTR while reading data from children
kselftest/arm64: Flag fp-stress as exiting when we begin finishing up
kselftest/arm64: Don't repeat termination handler for fp-stress
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
arm64: fix the build with binutils 2.27
kselftest/arm64: Don't enable v8.5 for MTE selftest builds
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
kselftest/arm64: Fix typo in hwcap check
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64/sve: Add Perf extensions documentation
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kcfi updates from Kees Cook:
"This replaces the prior support for Clang's standard Control Flow
Integrity (CFI) instrumentation, which has required a lot of special
conditions (e.g. LTO) and work-arounds.
The new implementation ("Kernel CFI") is specific to C, directly
designed for the Linux kernel, and takes advantage of architectural
features like x86's IBT. This series retains arm64 support and adds
x86 support.
GCC support is expected in the future[1], and additional "generic"
architectural support is expected soon[2].
Summary:
- treewide: Remove old CFI support details
- arm64: Replace Clang CFI support with Clang KCFI support
- x86: Introduce Clang KCFI support"
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107048 [1]
Link: https://github.com/samitolvanen/llvm-project/commits/kcfi_generic [2]
* tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits)
x86: Add support for CONFIG_CFI_CLANG
x86/purgatory: Disable CFI
x86: Add types to indirectly called assembly functions
x86/tools/relocs: Ignore __kcfi_typeid_ relocations
kallsyms: Drop CONFIG_CFI_CLANG workarounds
objtool: Disable CFI warnings
objtool: Preserve special st_shndx indexes in elf_update_symbol
treewide: Drop __cficanonical
treewide: Drop WARN_ON_FUNCTION_MISMATCH
treewide: Drop function_nocfi
init: Drop __nocfi from __init
arm64: Drop unneeded __nocfi attributes
arm64: Add CFI error handling
arm64: Add types to indirect called assembly functions
psci: Fix the function type for psci_initcall_t
lkdtm: Emit an indirect call for CFI tests
cfi: Add type helper macros
cfi: Switch to -fsanitize=kcfi
cfi: Drop __CFI_ADDRESSABLE
cfi: Remove CONFIG_CFI_CLANG_SHADOW
...
|
|
The objects placed at the head of vmlinux need special treatments:
- arch/$(SRCARCH)/Makefile adds them to head-y in order to place
them before other archives in the linker command line.
- arch/$(SRCARCH)/kernel/Makefile adds them to extra-y instead of
obj-y to avoid them going into built-in.a.
This commit gets rid of the latter.
Create vmlinux.a to collect all the objects that are unconditionally
linked to vmlinux. The objects listed in head-y are moved to the head
of vmlinux.a by using 'ar m'.
With this, arch/$(SRCARCH)/kernel/Makefile can consistently use obj-y
for builtin objects.
There is no *.o that is directly linked to vmlinux. Drop unneeded code
in scripts/clang-tools/gen_compile_commands.py.
$(AR) mPi needs 'T' to workaround the llvm-ar bug. The fix was suggested
by Nathan Chancellor [1].
[1]: https://lore.kernel.org/llvm/YyjjT5gQ2hGMH0ni@dev-arch.thelio-3990X/
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
|
|
* for-next/misc:
: Miscellaneous patches
arm64/kprobe: Optimize the performance of patching single-step slot
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64: support huge vmalloc mappings
arm64: spectre: increase parameters that can be used to turn off bhb mitigation individually
arm64: run softirqs on the per-CPU IRQ stack
arm64: compat: Implement misalignment fixups for multiword loads
|
|
* for-next/alternatives:
: Alternatives (code patching) improvements
arm64: fix the build with binutils 2.27
arm64: avoid BUILD_BUG_ON() in alternative-macros
arm64: alternatives: add shared NOP callback
arm64: alternatives: add alternative_has_feature_*()
arm64: alternatives: have callbacks take a cap
arm64: alternatives: make alt_region const
arm64: alternatives: hoist print out of __apply_alternatives()
arm64: alternatives: proton-pack: prepare for cap changes
arm64: alternatives: kvm: prepare for cap changes
arm64: cpufeature: make cpus_have_cap() noinstr-safe
|
|
'for-next/gettimeofday', 'for-next/stacktrace', 'for-next/atomics', 'for-next/el1-exceptions', 'for-next/a510-erratum-2658417', 'for-next/defconfig', 'for-next/tpidr2_el0' and 'for-next/ftrace', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
arm64/sve: Add Perf extensions documentation
perf: arm64: Add SVE vector granule register to user regs
MAINTAINERS: add maintainers for Alibaba' T-Head PMU driver
drivers/perf: add DDR Sub-System Driveway PMU driver for Yitian 710 SoC
docs: perf: Add description for Alibaba's T-Head PMU driver
* for-next/doc:
: Documentation/arm64 updates
arm64/sve: Document our actual ABI for clearing registers on syscall
* for-next/sve:
: SVE updates
arm64/sysreg: Add hwcap for SVE EBF16
* for-next/sysreg: (35 commits)
: arm64 system registers generation (more conversions)
arm64/sysreg: Fix a few missed conversions
arm64/sysreg: Convert ID_AA64AFRn_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64DFR1_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64FDR0_EL1 to automatic generation
arm64/sysreg: Use feature numbering for PMU and SPE revisions
arm64/sysreg: Add _EL1 into ID_AA64DFR0_EL1 definition names
arm64/sysreg: Align field names in ID_AA64DFR0_EL1 with architecture
arm64/sysreg: Add defintion for ALLINT
arm64/sysreg: Convert SCXTNUM_EL1 to automatic generation
arm64/sysreg: Convert TIPDR_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64PFR1_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64PFR0_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64MMFR2_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64MMFR1_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64MMFR0_EL1 to automatic generation
arm64/sysreg: Convert HCRX_EL2 to automatic generation
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 SME enumeration
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 BTI enumeration
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 fractional version fields
arm64/sysreg: Standardise naming for MTE feature enumeration
...
* for-next/gettimeofday:
: Use self-synchronising counter access in gettimeofday() (if FEAT_ECV)
arm64: vdso: use SYS_CNTVCTSS_EL0 for gettimeofday
arm64: alternative: patch alternatives in the vDSO
arm64: module: move find_section to header
* for-next/stacktrace:
: arm64 stacktrace cleanups and improvements
arm64: stacktrace: track hyp stacks in unwinder's address space
arm64: stacktrace: track all stack boundaries explicitly
arm64: stacktrace: remove stack type from fp translator
arm64: stacktrace: rework stack boundary discovery
arm64: stacktrace: add stackinfo_on_stack() helper
arm64: stacktrace: move SDEI stack helpers to stacktrace code
arm64: stacktrace: rename unwind_next_common() -> unwind_next_frame_record()
arm64: stacktrace: simplify unwind_next_common()
arm64: stacktrace: fix kerneldoc comments
* for-next/atomics:
: arm64 atomics improvements
arm64: atomic: always inline the assembly
arm64: atomics: remove LL/SC trampolines
* for-next/el1-exceptions:
: Improve the reporting of EL1 exceptions
arm64: rework BTI exception handling
arm64: rework FPAC exception handling
arm64: consistently pass ESR_ELx to die()
arm64: die(): pass 'err' as long
arm64: report EL1 UNDEFs better
* for-next/a510-erratum-2658417:
: Cortex-A510: 2658417: remove BF16 support due to incorrect result
arm64: errata: remove BF16 HWCAP due to incorrect result on Cortex-A510
arm64: cpufeature: Expose get_arm64_ftr_reg() outside cpufeature.c
arm64: cpufeature: Force HWCAP to be based on the sysreg visible to user-space
* for-next/defconfig:
: arm64 defconfig updates
arm64: defconfig: Add Coresight as module
arm64: Enable docker support in defconfig
arm64: defconfig: Enable memory hotplug and hotremove config
arm64: configs: Enable all PMUs provided by Arm
* for-next/tpidr2_el0:
: arm64 ptrace() support for TPIDR2_EL0
kselftest/arm64: Add coverage of TPIDR2_EL0 ptrace interface
arm64/ptrace: Support access to TPIDR2_EL0
arm64/ptrace: Document extension of NT_ARM_TLS to cover TPIDR2_EL0
kselftest/arm64: Add test coverage for NT_ARM_TLS
* for-next/ftrace:
: arm64 ftraces updates/fixes
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
|
|
Single-step slot would not be used until kprobe is enabled, that means
no race condition occurs on it under SMP, hence it is safe to pacth ss
slot without stopping machine.
Since I and D caches are coherent within single-step slot from
aarch64_insn_patch_text_nosync(), hence no need to do it again via
flush_icache_range().
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Link: https://lore.kernel.org/r/20220927022435.129965-4-liaochang1@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add missing __init/__exit annotations to module init/exit funcs.
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Link: https://lore.kernel.org/r/20220911034747.132098-1-xiujianfeng@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Li Huafei reports that mcount-based ftrace with module PLTs was broken
by commit:
a6253579977e4c6f ("arm64: ftrace: consistently handle PLTs.")
When a module PLTs are used and a module is loaded sufficiently far away
from the kernel, we'll create PLTs for any branches which are
out-of-range. These are separate from the special ftrace trampoline
PLTs, which the module PLT code doesn't directly manipulate.
When mcount is in use this is a problem, as each mcount callsite in a
module will be initialized to point to a module PLT, but since commit
a6253579977e4c6f ftrace_make_nop() will assume that the callsite has
been initialized to point to the special ftrace trampoline PLT, and
ftrace_find_callable_addr() rejects other cases.
This means that when ftrace tries to initialize a callsite via
ftrace_make_nop(), the call to ftrace_find_callable_addr() will find
that the `_mcount` stub is out-of-range and is not handled by the ftrace
PLT, resulting in a splat:
| ftrace_test: loading out-of-tree module taints kernel.
| ftrace: no module PLT for _mcount
| ------------[ ftrace bug ]------------
| ftrace failed to modify
| [<ffff800029180014>] 0xffff800029180014
| actual: 44:00:00:94
| Initializing ftrace call sites
| ftrace record flags: 2000000
| (0)
| expected tramp: ffff80000802eb3c
| ------------[ cut here ]------------
| WARNING: CPU: 3 PID: 157 at kernel/trace/ftrace.c:2120 ftrace_bug+0x94/0x270
| Modules linked in:
| CPU: 3 PID: 157 Comm: insmod Tainted: G O 6.0.0-rc6-00151-gcd722513a189-dirty #22
| Hardware name: linux,dummy-virt (DT)
| pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : ftrace_bug+0x94/0x270
| lr : ftrace_bug+0x21c/0x270
| sp : ffff80000b2bbaf0
| x29: ffff80000b2bbaf0 x28: 0000000000000000 x27: ffff0000c4d38000
| x26: 0000000000000001 x25: ffff800009d7e000 x24: ffff0000c4d86e00
| x23: 0000000002000000 x22: ffff80000a62b000 x21: ffff8000098ebea8
| x20: ffff0000c4d38000 x19: ffff80000aa24158 x18: ffffffffffffffff
| x17: 0000000000000000 x16: 0a0d2d2d2d2d2d2d x15: ffff800009aa9118
| x14: 0000000000000000 x13: 6333626532303830 x12: 3030303866666666
| x11: 203a706d61727420 x10: 6465746365707865 x9 : 3362653230383030
| x8 : c0000000ffffefff x7 : 0000000000017fe8 x6 : 000000000000bff4
| x5 : 0000000000057fa8 x4 : 0000000000000000 x3 : 0000000000000001
| x2 : ad2cb14bb5438900 x1 : 0000000000000000 x0 : 0000000000000022
| Call trace:
| ftrace_bug+0x94/0x270
| ftrace_process_locs+0x308/0x430
| ftrace_module_init+0x44/0x60
| load_module+0x15b4/0x1ce8
| __do_sys_init_module+0x1ec/0x238
| __arm64_sys_init_module+0x24/0x30
| invoke_syscall+0x54/0x118
| el0_svc_common.constprop.4+0x84/0x100
| do_el0_svc+0x3c/0xd0
| el0_svc+0x1c/0x50
| el0t_64_sync_handler+0x90/0xb8
| el0t_64_sync+0x15c/0x160
| ---[ end trace 0000000000000000 ]---
| ---------test_init-----------
Fix this by reverting to the old behaviour of ignoring the old
instruction when initialising an mcount callsite in a module, which was
the behaviour prior to commit a6253579977e4c6f.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: a6253579977e ("arm64: ftrace: consistently handle PLTs.")
Reported-by: Li Huafei <lihuafei1@huawei.com>
Link: https://lore.kernel.org/linux-arm-kernel/20220929094134.99512-1-lihuafei1@huawei.com
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220929134525.798593-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Since commit 4e69ecf4da1e ("arm64/module: ftrace: deal with place
relative nature of PLTs"), plt_equals_entry() is not used outside of
module-plts.c, so make it static.
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220929094134.99512-2-lihuafei1@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Rework for_each_mte_vma() to use a VMA iterator instead of an explicit
linked-list.
Link: https://lkml.kernel.org/r/20220906194824.2110408-32-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220218023650.672072-1-Liam.Howlett@oracle.com
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use the VMA iterator instead.
Link: https://lkml.kernel.org/r/20220906194824.2110408-31-Liam.Howlett@oracle.com
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With -fsanitize=kcfi, we no longer need function_nocfi() as
the compiler won't change function references to point to a
jump table. Remove all implementations and uses of the macro.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-14-samitolvanen@google.com
|
|
With -fsanitize=kcfi, CONFIG_CFI_CLANG no longer has issues
with address space confusion in functions that switch to linear
mapping. Now that the indirectly called assembly functions have
type annotations, drop the __nocfi attributes.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-12-samitolvanen@google.com
|
|
With -fsanitize=kcfi, CFI always traps. Add arm64 support for handling CFI
failures. The registers containing the target address and the expected type
are encoded in the first ten bits of the ESR as follows:
- 0-4: n, where the register Xn contains the target address
- 5-9: m, where the register Wm contains the type hash
This produces the following oops on CFI failure (generated using lkdtm):
[ 21.885179] CFI failure at lkdtm_indirect_call+0x2c/0x44 [lkdtm]
(target: lkdtm_increment_int+0x0/0x1c [lkdtm]; expected type: 0x7e0c52a)
[ 21.886593] Internal error: Oops - CFI: 0 [#1] PREEMPT SMP
[ 21.891060] Modules linked in: lkdtm
[ 21.893363] CPU: 0 PID: 151 Comm: sh Not tainted
5.19.0-rc1-00021-g852f4e48dbab #1
[ 21.895560] Hardware name: linux,dummy-virt (DT)
[ 21.896543] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 21.897583] pc : lkdtm_indirect_call+0x2c/0x44 [lkdtm]
[ 21.898551] lr : lkdtm_CFI_FORWARD_PROTO+0x3c/0x6c [lkdtm]
[ 21.899520] sp : ffff8000083a3c50
[ 21.900191] x29: ffff8000083a3c50 x28: ffff0000027e0ec0 x27: 0000000000000000
[ 21.902453] x26: 0000000000000000 x25: ffffc2aa3d07e7b0 x24: 0000000000000002
[ 21.903736] x23: ffffc2aa3d079088 x22: ffffc2aa3d07e7b0 x21: ffff000003379000
[ 21.905062] x20: ffff8000083a3dc0 x19: 0000000000000012 x18: 0000000000000000
[ 21.906371] x17: 000000007e0c52a5 x16: 000000003ad55aca x15: ffffc2aa60d92138
[ 21.907662] x14: ffffffffffffffff x13: 2e2e2e2065707974 x12: 0000000000000018
[ 21.909775] x11: ffffc2aa62322b88 x10: ffffc2aa62322aa0 x9 : c7e305fb5195d200
[ 21.911898] x8 : ffffc2aa3d077e20 x7 : 6d20676e696c6c61 x6 : 43203a6d74646b6c
[ 21.913108] x5 : ffffc2aa6266c9df x4 : ffffc2aa6266c9e1 x3 : ffff8000083a3968
[ 21.914358] x2 : 80000000fffff122 x1 : 00000000fffff122 x0 : ffffc2aa3d07e8f8
[ 21.915827] Call trace:
[ 21.916375] lkdtm_indirect_call+0x2c/0x44 [lkdtm]
[ 21.918060] lkdtm_CFI_FORWARD_PROTO+0x3c/0x6c [lkdtm]
[ 21.919030] lkdtm_do_action+0x34/0x4c [lkdtm]
[ 21.919920] direct_entry+0x170/0x1ac [lkdtm]
[ 21.920772] full_proxy_write+0x84/0x104
[ 21.921759] vfs_write+0x188/0x3d8
[ 21.922387] ksys_write+0x78/0xe8
[ 21.922986] __arm64_sys_write+0x1c/0x2c
[ 21.923696] invoke_syscall+0x58/0x134
[ 21.924554] el0_svc_common+0xb4/0xf4
[ 21.925603] do_el0_svc+0x2c/0xb4
[ 21.926563] el0_svc+0x2c/0x7c
[ 21.927147] el0t_64_sync_handler+0x84/0xf0
[ 21.927985] el0t_64_sync+0x18c/0x190
[ 21.929133] Code: 728a54b1 72afc191 6b11021f 54000040 (d4304500)
[ 21.930690] ---[ end trace 0000000000000000 ]---
[ 21.930971] Kernel panic - not syncing: Oops - CFI: Fatal exception
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-11-samitolvanen@google.com
|
|
With CONFIG_CFI_CLANG, assembly functions indirectly called from C
code must be annotated with type identifiers to pass CFI checking. Use
SYM_TYPED_FUNC_START for the indirectly called functions, and ensure
we emit `bti c` also with SYM_TYPED_FUNC_START.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-10-samitolvanen@google.com
|
|
In preparation for removing CC_FLAGS_CFI from CC_FLAGS_LTO, explicitly
filter out CC_FLAGS_CFI in all the makefiles where we currently filter
out CC_FLAGS_LTO.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-2-samitolvanen@google.com
|
|
If FEAT_MTE2 is disabled via the arm64.nomte command line argument on a
CPU that claims to support FEAT_MTE2, the kernel will use Tagged Normal
in the MAIR. If we interpret arm64.nomte to mean that the CPU does not
in fact implement FEAT_MTE2, setting the system register like this may
lead to UNSPECIFIED behavior. Fix it by arranging for MAIR to be set
in the C function cpu_enable_mte which is called based on the sanitized
version of the system register.
There is no need for the rest of the MTE-related system register
initialization to happen from assembly, with the exception of TCR_EL1,
which must be set to include at least TBI1 because the secondary CPUs
access KASan-allocated data structures early. Therefore, make the TCR_EL1
initialization unconditional and move the rest of the initialization to
cpu_enable_mte so that we no longer have a dependency on the unsanitized
ID register value.
Co-developed-by: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Evgenii Stepanov <eugenis@google.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 3b714d24ef17 ("arm64: mte: CPU feature detection and initial sysreg configuration")
Cc: <stable@vger.kernel.org> # 5.10.x
Link: https://lore.kernel.org/r/20220915222053.3484231-1-eugenis@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Dwarf based unwinding in a function that pushes SVE registers onto
the stack requires the unwinder to know the length of the SVE register
to calculate the stack offsets correctly. This was added to the Arm
specific Dwarf spec as the VG pseudo register[1].
Add the vector length at position 46 if it's requested by userspace and
SVE is supported. If it's not supported then fail to open the event.
The vector length must be on each sample because it can be changed
at runtime via a prctl or ptrace call. Also by adding it as a register
rather than a separate attribute, minimal changes will be required in an
unwinder that already indexes into the register list.
[1]: https://github.com/ARM-software/abi-aa/blob/main/aadwarf64/aadwarf64.rst
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Clark <james.clark@arm.com>
Link: https://lore.kernel.org/r/20220901132658.1024635-2-james.clark@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
cpufreq_get_hw_max_freq() returns max frequency in kHz as *unsigned int*,
while freq_inv_set_max_ratio() gets passed this frequency in Hz as 'u64'.
Multiplying max frequency by 1000 can potentially result in overflow --
multiplying by 1000ULL instead should avoid that...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool.
Fixes: cd0ed03a8903 ("arm64: use activity monitors for frequency invariance")
Signed-off-by: Sergey Shtylyov <s.shtylyov@omp.ru>
Link: https://lore.kernel.org/r/01493d64-2bce-d968-86dc-11a122a9c07d@omp.ru
Signed-off-by: Will Deacon <will@kernel.org>
|
|
SME introduces an additional EL0 register, TPIDR2_EL0, intended for use
by userspace as part of the SME. Provide ptrace access to it through the
existing NT_ARM_TLS regset used for TPIDR_EL0 by expanding it to two
registers with TPIDR2_EL0 being the second one.
Existing programs that query the size of the register set will be able
to observe the increased size of the register set. Programs that assume
the register set is single register will see no change. On systems that
do not support SME TPIDR2_EL0 will read as 0 and writes will be ignored,
support for SME should be queried via hwcaps as normal.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220829154921.837871-4-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The stub is used in different execution environments, but on arm64,
RISC-V and LoongArch, we still use the core kernel's implementation of
memcpy and memset, as they are just a branch instruction away, and can
generally be reused even from code such as the EFI stub that runs in a
completely different address space.
KAsan complicates this slightly, resulting in the need for some hacks to
expose the uninstrumented, __ prefixed versions as the normal ones, as
the latter are instrumented to include the KAsan checks, which only work
in the core kernel.
Unfortunately, #define'ing memcpy to __memcpy when building C code does
not guarantee that no explicit memcpy() calls will be emitted. And with
the upcoming zboot support, which consists of a separate binary which
therefore needs its own implementation of memcpy/memset anyway, it's
better to provide one explicitly instead of linking to the existing one.
Given that EFI exposes implementations of memmove() and memset() via the
boot services table, let's wire those up in the appropriate way, and
drop the references to the core kernel ones.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
For each instance of an alternative, the compiler outputs a distinct
copy of the alternative instructions into a subsection. As the compiler
doesn't have special knowledge of alternatives, it cannot coalesce these
to save space.
In a defconfig kernel built with GCC 12.1.0, there are approximately
10,000 instances of alternative_has_feature_likely(), where the
replacement instruction is always a NOP. As NOPs are
position-independent, we don't need a unique copy per alternative
sequence.
This patch adds a callback to patch an alternative sequence with NOPs,
and make use of this in alternative_has_feature_likely(). So that this
can be used for other sites in future, this is written to patch multiple
instructions up to the original sequence length.
For NVHE, an alias is added to image-vars.h.
For modules, the callback is exported. Note that as modules are loaded
within 2GiB of the kernel, an alt_instr entry in a module can always
refer directly to the callback, and no special handling is necessary.
When building with GCC 12.1.0, the vmlinux is ~158KiB smaller, though
the resulting Image size is unchanged due to alignment constraints and
padding:
| % ls -al vmlinux-*
| -rwxr-xr-x 1 mark mark 134644592 Sep 1 14:52 vmlinux-after
| -rwxr-xr-x 1 mark mark 134486232 Sep 1 14:50 vmlinux-before
| % ls -al Image-*
| -rw-r--r-- 1 mark mark 37108224 Sep 1 14:52 Image-after
| -rw-r--r-- 1 mark mark 37108224 Sep 1 14:50 Image-before
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currrently we use a mixture of alternative sequences and static branches
to handle features detected at boot time. For ease of maintenance we
generally prefer to use static branches in C code, but this has a few
downsides:
* Each static branch has metadata in the __jump_table section, which is
not discarded after features are finalized. This wastes some space,
and slows down the patching of other static branches.
* The static branches are patched at a different point in time from the
alternatives, so changes are not atomic. This leaves a transient
period where there could be a mismatch between the behaviour of
alternatives and static branches, which could be problematic for some
features (e.g. pseudo-NMI).
* More (instrumentable) kernel code is executed to patch each static
branch, which can be risky when patching certain features (e.g.
irqflags management for pseudo-NMI).
* When CONFIG_JUMP_LABEL=n, static branches are turned into a load of a
flag and a conditional branch. This means it isn't safe to use such
static branches in an alternative address space (e.g. the NVHE/PKVM
hyp code), where the generated address isn't safe to acccess.
To deal with these issues, this patch introduces new
alternative_has_feature_*() helpers, which work like static branches but
are patched using alternatives. This ensures the patching is performed
at the same time as other alternative patching, allows the metadata to
be freed after patching, and is safe for use in alternative address
spaces.
Note that all supported toolchains have asm goto support, and since
commit:
a0a12c3ed057af57 ("asm goto: eradicate CC_HAS_ASM_GOTO)"
... the CC_HAS_ASM_GOTO Kconfig symbol has been removed, so no feature
check is necessary, and we can always make use of asm goto.
Additionally, note that:
* This has no impact on cpus_have_cap(), which is a dynamic check.
* This has no functional impact on cpus_have_const_cap(). The branches
are patched slightly later than before this patch, but these branches
are not reachable until caps have been finalised.
* It is now invalid to use cpus_have_final_cap() in the window between
feature detection and patching. All existing uses are only expected
after patching anyway, so this should not be a problem.
* The LSE atomics will now be enabled during alternatives patching
rather than immediately before. As the LL/SC an LSE atomics are
functionally equivalent this should not be problematic.
When building defconfig with GCC 12.1.0, the resulting Image is 64KiB
smaller:
| % ls -al Image-*
| -rw-r--r-- 1 mark mark 37108224 Aug 23 09:56 Image-after
| -rw-r--r-- 1 mark mark 37173760 Aug 23 09:54 Image-before
According to bloat-o-meter.pl:
| add/remove: 44/34 grow/shrink: 602/1294 up/down: 39692/-61108 (-21416)
| Function old new delta
| [...]
| Total: Before=16618336, After=16596920, chg -0.13%
| add/remove: 0/2 grow/shrink: 0/0 up/down: 0/-1296 (-1296)
| Data old new delta
| arm64_const_caps_ready 16 - -16
| cpu_hwcap_keys 1280 - -1280
| Total: Before=8987120, After=8985824, chg -0.01%
| add/remove: 0/0 grow/shrink: 0/0 up/down: 0/0 (0)
| RO Data old new delta
| Total: Before=18408, After=18408, chg +0.00%
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-8-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Today, callback alternatives are special-cased within
__apply_alternatives(), and are applied alongside patching for system
capabilities as ARM64_NCAPS is not part of the boot_capabilities feature
mask.
This special-casing is less than ideal. Giving special meaning to
ARM64_NCAPS for this requires some structures and loops to use
ARM64_NCAPS + 1 (AKA ARM64_NPATCHABLE), while others use ARM64_NCAPS.
It's also not immediately clear callback alternatives are only applied
when applying alternatives for system-wide features.
To make this a bit clearer, changes the way that callback alternatives
are identified to remove the special-casing of ARM64_NCAPS, and to allow
callback alternatives to be associated with a cpucap as with all other
alternatives.
New cpucaps, ARM64_ALWAYS_BOOT and ARM64_ALWAYS_SYSTEM are added which
are always detected alongside boot cpu capabilities and system
capabilities respectively. All existing callback alternatives are made
to use ARM64_ALWAYS_SYSTEM, and so will be patched at the same point
during the boot flow as before.
Subsequent patches will make more use of these new cpucaps.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We never alter a struct alt_region after creation, and we open-code the
bounds of the kernel alternatives region in two functions. The
duplication is a bit unfortunate for clarity (and in future we're likely
to have more functions altering alternative regions), and to avoid
accidents it would be good to make the structure const.
This patch adds a shared struct `kernel_alternatives` alt_region for the
main kernel image, and marks the alt_regions as const to prevent
unintentional modification.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Printing in the middle of __apply_alternatives() is potentially unsafe
and not all that helpful given these days we practically always patch
*something*.
Hoist the print out of __apply_alternatives(), and add separate prints
to __apply_alternatives() and apply_alternatives_all(), which will make
it easier to spot if either patching call goes wrong.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The spectre patching callbacks use cpus_have_final_cap(), and subsequent
patches will make it invalid to call cpus_have_final_cap() before
alternatives patching has completed.
In preparation for said change, this patch modifies the spectre patching
callbacks use cpus_have_cap(). This is not subject to patching, and will
dynamically check the cpu_hwcaps array, which is functionally equivalent
to the existing behaviour.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Cortex-A510's erratum #2658417 causes two BF16 instructions to return the
wrong result in rare circumstances when a pair of A510 CPUs are using
shared neon hardware.
The two instructions affected are BFMMLA and VMMLA, support for these is
indicated by the BF16 HWCAP. Remove it on affected platforms.
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-4-james.morse@arm.com
[catalin.marinas@arm.com: add revision to the Kconfig help; remove .type]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
get_arm64_ftr_reg() returns the properties of a system register based
on its instruction encoding.
This is needed by erratum workaround in cpu_errata.c to modify the
user-space visible view of id registers.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-3-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|