Age | Commit message (Collapse) | Author | Files | Lines |
|
The UniPhier architecture (32bit) switched over to PSCI. Remove
the SoC-specific SMP operations.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Commit 307d40c56b0c ("ARM: uniphier: rework SMP code to support new
System Bus binding") added a new DT binding for SMP code, but still
kept old code for the backward compatibility.
Linux 4.6 was out with both bindings supported, so it should not
hurt to drop the old code now. Moreover, the mainline code are
currently not used for any of our products, so this change has
no impact on our customers in any way.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC platform updates from Arnd Bergmann:
"We get support for three new 32-bit SoC platforms this time.
The amount of changes in arch/arm for any of them is miniscule, as all
the interesting code is in device driver subsystems (irqchip, clk,
pinctrl, ...) these days. I'm listing them here, as the addition of
the Kconfig statement is the main relevant milestone for a new
platform. In each case, some drivers are are shared with existing
platforms, while other drivers are added for v4.7 as well, or come in
a later release.
- The Aspeed platform is probably the most interesting one, this is
what most whitebox servers use as their baseboard management
controller. We get support for the very common ast2400 and ast2500
SoCs. The OpenBMC project focuses on this chip, and the LWN
article about their ELC 2016 presentation at
https://lwn.net/Articles/683320/
triggered the submission, but the code comes from IBM's OpenPOWER
team rather than the team at Facebook. There are still a lot more
drivers that need to get added over time, and I hope both teams can
work together on that.
- OXNAS is an old platform for Network Attached Storage devices from
Oxford Semiconductor. There are models with ARM10 (!) and
ARM11MPCore cores, but for now, we only support the original ARM9
based versions. The product lineup was subsequently part of PLX,
Avago and now the new Broadcom Ltd.
https://wiki.openwrt.org/doc/hardware/soc/soc.oxnas
has some more information.
- V2M-MPS2 is a prototyping platform from ARM for their Cortex-M
cores and is related to the existing Realview / Versatile Express
lineup, but without MMU.
We now support various NOMMU platforms, so adding a new one is
fairly straightforward.
http://infocenter.arm.com/help/topic/com.arm.doc.100112_0100_03_en/
has detailed information about the platform.
Other noteworthy updates:
- Work on LPC32xx has resumed, and Vladimir Zapolskiy and Sylvain
Lemieux are now maintaining the platform.
This is an older ARM9 based platform from NXP (not Freescale), but
it remains in use in embedded markets.
- Kevin Hilman is now co-maintaining the Amlogic Meson platform for
both 32-bit and 64-bit ARM, and started contributing some patches.
- As is often the case, work on the OMAP platforms makes up the bulk
of the actual SoC code changes in arch/arm, but there isn't a lot
of that either"
* tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (42 commits)
MAINTAINERS: ARM/Amlogic: add co-maintainer, misc. updates
MAINTAINERS: add ARM/NXP LPC32XX SoC specific drivers to the section
MAINTAINERS: add new maintainers of NXP LPC32xx SoC
MAINTAINERS: move ARM/NXP LPC32xx record to ARM section
arm: Add Aspeed machine
ARM: lpc32xx: remove duplicate const on lpc32xx_auxdata_lookup
ARM: lpc32xx: remove leftovers of legacy clock source and provider drivers
ARM: lpc32xx: remove reboot header file
ARM: dove: Remove CLK_IS_ROOT
ARM: orion5x: Remove CLK_IS_ROOT
ARM: mv78xx0: Remove CLK_IS_ROOT
ARM: davinci: da850: use clk->set_parent for async3
ARM: davinci: Move clock init after ioremap.
MAINTAINERS: Update ARM Versatile Express platform entry
ARM: vexpress/mps2: introduce MPS2 platform
MAINTAINERS: add maintainer entry for ARM/OXNAS platform
ARM: Add new mach-oxnas
irqchip: versatile-fpga: add new compatible for OX810SE SoC
ARM: uniphier: correct the call order of of_node_put()
MAINTAINERS: fix stale TI DaVinci entries
...
|
|
Put nodes after of_address_to_resource() in case the nodes might be
released while parsing in them.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
My intention was to ioremap a 4-byte register. Coincidentally enough,
sizeof(SZ_4) equals to SZ_4, but this code is weird anyway.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
During the review process of the UniPhier System Bus driver
(drivers/bus/uniphier.c), the current binding of the System Bus
Controller turned out to be no good. In order to use the driver,
some nodes in the device trees must be tweaked. It would also have
impacts on the SMP code because the SMP related registers are
located in the System Bus Controller block. This commit reworks
the smp_operations to support the new binding, but still supports
the old binding, too.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
This node pointer is allocated by of_find_compatible_node() in this
function. It should be put before exitting this function.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
These smp_operations structures are not over-written, so add "const"
qualifier and replace __initdata with __initconst.
Also, add "static" where it is possible.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Acked-by: Moritz Fischer <moritz.fischer@ettus.com>
Acked-by: Stephen Boyd <sboyd@codeaurora.org> # qcom part
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Patrice Chotard <patrice.chotard@st.com>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Acked-by: Wei Xu <xuwei5@hisilicon.com>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Acked-by: Shawn Guo <shawnguo@kernel.org>
Acked-by: Matthias Brugger <matthias.bgg@gmail.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Liviu Dudau <Liviu.Dudau@arm.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The complexity of the boot sequence of UniPhier SoC family is
a PITA due to the following hardware limitations:
[1] No dedicated on-chip SRAM
SoCs in general have small SRAM, on which a tiny firmware or a boot
loader can run before SDRAM is initialized. As UniPhier SoCs do not
have any dedicated SRAM accessible from CPUs, the locked outer cache
is used instead. Due to the ARM specification, to have access to
the outer cache, the MMU must be enabled. This is done for all CPU
cores by the program hard-wired in the boot ROM. The boot ROM code
loads a small amount of program (this is usually SPL of U-Boot) from
a non-volatile device onto the locked outer cache, and the primary
CPU jumps to it. The secondary CPUs stay in the boot ROM until they
are kicked by the primary CPU.
[2] CPUs can not directly jump to SDRAM address space
As mentioned above, the MMU is enable for all the CPUs with the page
table hard-wired in the boot ROM. Unfortunately, the page table only
has minimal sets of valid sections; all the sections of SDRAM address
space are zero-filled. That means all the CPUs, including secondary
ones, can not jump directly to SDRAM address space. So, the primary
CPU must bring up secondary CPUs to accessible address mapped onto
the outer cache, then again kick them to SDRAM address space.
Before this commit, this complex task was done with help of a boot
loader (U-Boot); U-Boot SPL brings up the secondary CPUs to the entry
of U-Boot SPL and they stay there until they are kicked by Linux.
This is not nice because a boot loader must put the secondary CPUs
into a certain state expected by the kernel. It makes difficult to
port another boot loader because the boot loader and the kernel must
work in sync to wake up the secondary CPUs.
This commit reworks the SMP operations so that they do not rely on
particular boot loader implementation; the SMP operations (platsmp.c)
put trampoline code (headsmp.S) on a locked way of the outer cache.
The secondary CPUs jump from the boot ROM to secondary_entry via the
trampoline code. The boot loader no longer needs to take care of SMP.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
This is unnecessary since commit 02b4e2756e01 ("ARM: v7 setup
function should invalidate L1 cache").
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
Initial commit for a new SoC family, UniPhier, developed by
Socionext Inc. (formerly, System LSI Business Division of
Panasonic Corporation).
This commit includes a minimal set of components for booting the
kernel, including SMP support.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|