diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/page-writeback.c | 23 | ||||
-rw-r--r-- | mm/percpu-vm.c | 17 | ||||
-rw-r--r-- | mm/percpu.c | 62 | ||||
-rw-r--r-- | mm/slub.c | 42 |
4 files changed, 81 insertions, 63 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index a3278f005230..71252486bc6f 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -128,7 +128,6 @@ unsigned long global_dirty_limit; * */ static struct prop_descriptor vm_completions; -static struct prop_descriptor vm_dirties; /* * couple the period to the dirty_ratio: @@ -154,7 +153,6 @@ static void update_completion_period(void) { int shift = calc_period_shift(); prop_change_shift(&vm_completions, shift); - prop_change_shift(&vm_dirties, shift); writeback_set_ratelimit(); } @@ -235,11 +233,6 @@ void bdi_writeout_inc(struct backing_dev_info *bdi) } EXPORT_SYMBOL_GPL(bdi_writeout_inc); -void task_dirty_inc(struct task_struct *tsk) -{ - prop_inc_single(&vm_dirties, &tsk->dirties); -} - /* * Obtain an accurate fraction of the BDI's portion. */ @@ -1133,17 +1126,17 @@ pause: pages_dirtied, pause, start_time); - __set_current_state(TASK_UNINTERRUPTIBLE); + __set_current_state(TASK_KILLABLE); io_schedule_timeout(pause); - dirty_thresh = hard_dirty_limit(dirty_thresh); /* - * max-pause area. If dirty exceeded but still within this - * area, no need to sleep for more than 200ms: (a) 8 pages per - * 200ms is typically more than enough to curb heavy dirtiers; - * (b) the pause time limit makes the dirtiers more responsive. + * This is typically equal to (nr_dirty < dirty_thresh) and can + * also keep "1000+ dd on a slow USB stick" under control. */ - if (nr_dirty < dirty_thresh) + if (task_ratelimit) + break; + + if (fatal_signal_pending(current)) break; } @@ -1395,7 +1388,6 @@ void __init page_writeback_init(void) shift = calc_period_shift(); prop_descriptor_init(&vm_completions, shift); - prop_descriptor_init(&vm_dirties, shift); } /** @@ -1724,7 +1716,6 @@ void account_page_dirtied(struct page *page, struct address_space *mapping) __inc_zone_page_state(page, NR_DIRTIED); __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); - task_dirty_inc(current); task_io_account_write(PAGE_CACHE_SIZE); } } diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c index ea534960a04b..12a48a88c0d8 100644 --- a/mm/percpu-vm.c +++ b/mm/percpu-vm.c @@ -50,14 +50,13 @@ static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, if (!pages || !bitmap) { if (may_alloc && !pages) - pages = pcpu_mem_alloc(pages_size); + pages = pcpu_mem_zalloc(pages_size); if (may_alloc && !bitmap) - bitmap = pcpu_mem_alloc(bitmap_size); + bitmap = pcpu_mem_zalloc(bitmap_size); if (!pages || !bitmap) return NULL; } - memset(pages, 0, pages_size); bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); *bitmapp = bitmap; @@ -143,8 +142,8 @@ static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, int page_start, int page_end) { flush_cache_vunmap( - pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), - pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); + pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), + pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); } static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) @@ -206,8 +205,8 @@ static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, int page_start, int page_end) { flush_tlb_kernel_range( - pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), - pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); + pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), + pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); } static int __pcpu_map_pages(unsigned long addr, struct page **pages, @@ -284,8 +283,8 @@ static void pcpu_post_map_flush(struct pcpu_chunk *chunk, int page_start, int page_end) { flush_cache_vmap( - pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), - pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); + pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), + pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); } /** diff --git a/mm/percpu.c b/mm/percpu.c index bf80e55dbed7..3bb810a72006 100644 --- a/mm/percpu.c +++ b/mm/percpu.c @@ -116,9 +116,9 @@ static int pcpu_atom_size __read_mostly; static int pcpu_nr_slots __read_mostly; static size_t pcpu_chunk_struct_size __read_mostly; -/* cpus with the lowest and highest unit numbers */ -static unsigned int pcpu_first_unit_cpu __read_mostly; -static unsigned int pcpu_last_unit_cpu __read_mostly; +/* cpus with the lowest and highest unit addresses */ +static unsigned int pcpu_low_unit_cpu __read_mostly; +static unsigned int pcpu_high_unit_cpu __read_mostly; /* the address of the first chunk which starts with the kernel static area */ void *pcpu_base_addr __read_mostly; @@ -273,11 +273,11 @@ static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) /** - * pcpu_mem_alloc - allocate memory + * pcpu_mem_zalloc - allocate memory * @size: bytes to allocate * * Allocate @size bytes. If @size is smaller than PAGE_SIZE, - * kzalloc() is used; otherwise, vmalloc() is used. The returned + * kzalloc() is used; otherwise, vzalloc() is used. The returned * memory is always zeroed. * * CONTEXT: @@ -286,7 +286,7 @@ static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, * RETURNS: * Pointer to the allocated area on success, NULL on failure. */ -static void *pcpu_mem_alloc(size_t size) +static void *pcpu_mem_zalloc(size_t size) { if (WARN_ON_ONCE(!slab_is_available())) return NULL; @@ -302,7 +302,7 @@ static void *pcpu_mem_alloc(size_t size) * @ptr: memory to free * @size: size of the area * - * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). + * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). */ static void pcpu_mem_free(void *ptr, size_t size) { @@ -384,7 +384,7 @@ static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); unsigned long flags; - new = pcpu_mem_alloc(new_size); + new = pcpu_mem_zalloc(new_size); if (!new) return -ENOMEM; @@ -604,11 +604,12 @@ static struct pcpu_chunk *pcpu_alloc_chunk(void) { struct pcpu_chunk *chunk; - chunk = pcpu_mem_alloc(pcpu_chunk_struct_size); + chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); if (!chunk) return NULL; - chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); + chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * + sizeof(chunk->map[0])); if (!chunk->map) { kfree(chunk); return NULL; @@ -977,6 +978,17 @@ bool is_kernel_percpu_address(unsigned long addr) * address. The caller is responsible for ensuring @addr stays valid * until this function finishes. * + * percpu allocator has special setup for the first chunk, which currently + * supports either embedding in linear address space or vmalloc mapping, + * and, from the second one, the backing allocator (currently either vm or + * km) provides translation. + * + * The addr can be tranlated simply without checking if it falls into the + * first chunk. But the current code reflects better how percpu allocator + * actually works, and the verification can discover both bugs in percpu + * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current + * code. + * * RETURNS: * The physical address for @addr. */ @@ -984,19 +996,19 @@ phys_addr_t per_cpu_ptr_to_phys(void *addr) { void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); bool in_first_chunk = false; - unsigned long first_start, first_end; + unsigned long first_low, first_high; unsigned int cpu; /* - * The following test on first_start/end isn't strictly + * The following test on unit_low/high isn't strictly * necessary but will speed up lookups of addresses which * aren't in the first chunk. */ - first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0); - first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu, - pcpu_unit_pages); - if ((unsigned long)addr >= first_start && - (unsigned long)addr < first_end) { + first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); + first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, + pcpu_unit_pages); + if ((unsigned long)addr >= first_low && + (unsigned long)addr < first_high) { for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); @@ -1233,7 +1245,9 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, for (cpu = 0; cpu < nr_cpu_ids; cpu++) unit_map[cpu] = UINT_MAX; - pcpu_first_unit_cpu = NR_CPUS; + + pcpu_low_unit_cpu = NR_CPUS; + pcpu_high_unit_cpu = NR_CPUS; for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { const struct pcpu_group_info *gi = &ai->groups[group]; @@ -1253,9 +1267,13 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, unit_map[cpu] = unit + i; unit_off[cpu] = gi->base_offset + i * ai->unit_size; - if (pcpu_first_unit_cpu == NR_CPUS) - pcpu_first_unit_cpu = cpu; - pcpu_last_unit_cpu = cpu; + /* determine low/high unit_cpu */ + if (pcpu_low_unit_cpu == NR_CPUS || + unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) + pcpu_low_unit_cpu = cpu; + if (pcpu_high_unit_cpu == NR_CPUS || + unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) + pcpu_high_unit_cpu = cpu; } } pcpu_nr_units = unit; @@ -1889,7 +1907,7 @@ void __init percpu_init_late(void) BUILD_BUG_ON(size > PAGE_SIZE); - map = pcpu_mem_alloc(size); + map = pcpu_mem_zalloc(size); BUG_ON(!map); spin_lock_irqsave(&pcpu_lock, flags); diff --git a/mm/slub.c b/mm/slub.c index 7d2a996c307e..ed3334d9b6da 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -1862,7 +1862,7 @@ static void unfreeze_partials(struct kmem_cache *s) { struct kmem_cache_node *n = NULL; struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); - struct page *page; + struct page *page, *discard_page = NULL; while ((page = c->partial)) { enum slab_modes { M_PARTIAL, M_FREE }; @@ -1904,7 +1904,8 @@ static void unfreeze_partials(struct kmem_cache *s) if (l == M_PARTIAL) remove_partial(n, page); else - add_partial(n, page, 1); + add_partial(n, page, + DEACTIVATE_TO_TAIL); l = m; } @@ -1915,14 +1916,22 @@ static void unfreeze_partials(struct kmem_cache *s) "unfreezing slab")); if (m == M_FREE) { - stat(s, DEACTIVATE_EMPTY); - discard_slab(s, page); - stat(s, FREE_SLAB); + page->next = discard_page; + discard_page = page; } } if (n) spin_unlock(&n->list_lock); + + while (discard_page) { + page = discard_page; + discard_page = discard_page->next; + + stat(s, DEACTIVATE_EMPTY); + discard_slab(s, page); + stat(s, FREE_SLAB); + } } /* @@ -1969,7 +1978,7 @@ int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) page->pobjects = pobjects; page->next = oldpage; - } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); + } while (irqsafe_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); stat(s, CPU_PARTIAL_FREE); return pobjects; } @@ -4435,30 +4444,31 @@ static ssize_t show_slab_objects(struct kmem_cache *s, for_each_possible_cpu(cpu) { struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); + int node = ACCESS_ONCE(c->node); struct page *page; - if (!c || c->node < 0) + if (node < 0) continue; - - if (c->page) { - if (flags & SO_TOTAL) - x = c->page->objects; + page = ACCESS_ONCE(c->page); + if (page) { + if (flags & SO_TOTAL) + x = page->objects; else if (flags & SO_OBJECTS) - x = c->page->inuse; + x = page->inuse; else x = 1; total += x; - nodes[c->node] += x; + nodes[node] += x; } page = c->partial; if (page) { x = page->pobjects; - total += x; - nodes[c->node] += x; + total += x; + nodes[node] += x; } - per_cpu[c->node]++; + per_cpu[node]++; } } |