summaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c752
1 files changed, 473 insertions, 279 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 8cc617ede7e2..8d9ceea7fe4d 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -73,8 +73,6 @@ EXPORT_SYMBOL(memory_cgrp_subsys);
struct mem_cgroup *root_mem_cgroup __read_mostly;
-#define MEM_CGROUP_RECLAIM_RETRIES 5
-
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;
@@ -257,8 +255,100 @@ struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
}
#ifdef CONFIG_MEMCG_KMEM
+extern spinlock_t css_set_lock;
+
+static void obj_cgroup_release(struct percpu_ref *ref)
+{
+ struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
+ struct mem_cgroup *memcg;
+ unsigned int nr_bytes;
+ unsigned int nr_pages;
+ unsigned long flags;
+
+ /*
+ * At this point all allocated objects are freed, and
+ * objcg->nr_charged_bytes can't have an arbitrary byte value.
+ * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
+ *
+ * The following sequence can lead to it:
+ * 1) CPU0: objcg == stock->cached_objcg
+ * 2) CPU1: we do a small allocation (e.g. 92 bytes),
+ * PAGE_SIZE bytes are charged
+ * 3) CPU1: a process from another memcg is allocating something,
+ * the stock if flushed,
+ * objcg->nr_charged_bytes = PAGE_SIZE - 92
+ * 5) CPU0: we do release this object,
+ * 92 bytes are added to stock->nr_bytes
+ * 6) CPU0: stock is flushed,
+ * 92 bytes are added to objcg->nr_charged_bytes
+ *
+ * In the result, nr_charged_bytes == PAGE_SIZE.
+ * This page will be uncharged in obj_cgroup_release().
+ */
+ nr_bytes = atomic_read(&objcg->nr_charged_bytes);
+ WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
+ nr_pages = nr_bytes >> PAGE_SHIFT;
+
+ spin_lock_irqsave(&css_set_lock, flags);
+ memcg = obj_cgroup_memcg(objcg);
+ if (nr_pages)
+ __memcg_kmem_uncharge(memcg, nr_pages);
+ list_del(&objcg->list);
+ mem_cgroup_put(memcg);
+ spin_unlock_irqrestore(&css_set_lock, flags);
+
+ percpu_ref_exit(ref);
+ kfree_rcu(objcg, rcu);
+}
+
+static struct obj_cgroup *obj_cgroup_alloc(void)
+{
+ struct obj_cgroup *objcg;
+ int ret;
+
+ objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
+ if (!objcg)
+ return NULL;
+
+ ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
+ GFP_KERNEL);
+ if (ret) {
+ kfree(objcg);
+ return NULL;
+ }
+ INIT_LIST_HEAD(&objcg->list);
+ return objcg;
+}
+
+static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
+ struct mem_cgroup *parent)
+{
+ struct obj_cgroup *objcg, *iter;
+
+ objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
+
+ spin_lock_irq(&css_set_lock);
+
+ /* Move active objcg to the parent's list */
+ xchg(&objcg->memcg, parent);
+ css_get(&parent->css);
+ list_add(&objcg->list, &parent->objcg_list);
+
+ /* Move already reparented objcgs to the parent's list */
+ list_for_each_entry(iter, &memcg->objcg_list, list) {
+ css_get(&parent->css);
+ xchg(&iter->memcg, parent);
+ css_put(&memcg->css);
+ }
+ list_splice(&memcg->objcg_list, &parent->objcg_list);
+
+ spin_unlock_irq(&css_set_lock);
+
+ percpu_ref_kill(&objcg->refcnt);
+}
+
/*
- * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
+ * This will be used as a shrinker list's index.
* The main reason for not using cgroup id for this:
* this works better in sparse environments, where we have a lot of memcgs,
* but only a few kmem-limited. Or also, if we have, for instance, 200
@@ -301,14 +391,12 @@ void memcg_put_cache_ids(void)
/*
* A lot of the calls to the cache allocation functions are expected to be
- * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
+ * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
* conditional to this static branch, we'll have to allow modules that does
* kmem_cache_alloc and the such to see this symbol as well
*/
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
EXPORT_SYMBOL(memcg_kmem_enabled_key);
-
-struct workqueue_struct *memcg_kmem_cache_wq;
#endif
static int memcg_shrinker_map_size;
@@ -477,10 +565,17 @@ ino_t page_cgroup_ino(struct page *page)
unsigned long ino = 0;
rcu_read_lock();
- if (PageSlab(page) && !PageTail(page))
- memcg = memcg_from_slab_page(page);
- else
- memcg = READ_ONCE(page->mem_cgroup);
+ memcg = page->mem_cgroup;
+
+ /*
+ * The lowest bit set means that memcg isn't a valid
+ * memcg pointer, but a obj_cgroups pointer.
+ * In this case the page is shared and doesn't belong
+ * to any specific memory cgroup.
+ */
+ if ((unsigned long) memcg & 0x1UL)
+ memcg = NULL;
+
while (memcg && !(memcg->css.flags & CSS_ONLINE))
memcg = parent_mem_cgroup(memcg);
if (memcg)
@@ -681,13 +776,16 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
*/
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
- long x;
+ long x, threshold = MEMCG_CHARGE_BATCH;
if (mem_cgroup_disabled())
return;
+ if (vmstat_item_in_bytes(idx))
+ threshold <<= PAGE_SHIFT;
+
x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
- if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
+ if (unlikely(abs(x) > threshold)) {
struct mem_cgroup *mi;
/*
@@ -713,29 +811,12 @@ parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
return mem_cgroup_nodeinfo(parent, nid);
}
-/**
- * __mod_lruvec_state - update lruvec memory statistics
- * @lruvec: the lruvec
- * @idx: the stat item
- * @val: delta to add to the counter, can be negative
- *
- * The lruvec is the intersection of the NUMA node and a cgroup. This
- * function updates the all three counters that are affected by a
- * change of state at this level: per-node, per-cgroup, per-lruvec.
- */
-void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
- int val)
+void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
+ int val)
{
- pg_data_t *pgdat = lruvec_pgdat(lruvec);
struct mem_cgroup_per_node *pn;
struct mem_cgroup *memcg;
- long x;
-
- /* Update node */
- __mod_node_page_state(pgdat, idx, val);
-
- if (mem_cgroup_disabled())
- return;
+ long x, threshold = MEMCG_CHARGE_BATCH;
pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
memcg = pn->memcg;
@@ -746,8 +827,12 @@ void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
/* Update lruvec */
__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
+ if (vmstat_item_in_bytes(idx))
+ threshold <<= PAGE_SHIFT;
+
x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
- if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
+ if (unlikely(abs(x) > threshold)) {
+ pg_data_t *pgdat = lruvec_pgdat(lruvec);
struct mem_cgroup_per_node *pi;
for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
@@ -757,6 +842,27 @@ void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}
+/**
+ * __mod_lruvec_state - update lruvec memory statistics
+ * @lruvec: the lruvec
+ * @idx: the stat item
+ * @val: delta to add to the counter, can be negative
+ *
+ * The lruvec is the intersection of the NUMA node and a cgroup. This
+ * function updates the all three counters that are affected by a
+ * change of state at this level: per-node, per-cgroup, per-lruvec.
+ */
+void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
+ int val)
+{
+ /* Update node */
+ __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
+
+ /* Update memcg and lruvec */
+ if (!mem_cgroup_disabled())
+ __mod_memcg_lruvec_state(lruvec, idx, val);
+}
+
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
pg_data_t *pgdat = page_pgdat(virt_to_page(p));
@@ -1377,12 +1483,11 @@ static char *memory_stat_format(struct mem_cgroup *memcg)
(u64)memcg_page_state(memcg, NR_FILE_PAGES) *
PAGE_SIZE);
seq_buf_printf(&s, "kernel_stack %llu\n",
- (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
+ (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1024);
seq_buf_printf(&s, "slab %llu\n",
- (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
- memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
- PAGE_SIZE);
+ (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
+ memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
seq_buf_printf(&s, "sock %llu\n",
(u64)memcg_page_state(memcg, MEMCG_SOCK) *
PAGE_SIZE);
@@ -1412,11 +1517,9 @@ static char *memory_stat_format(struct mem_cgroup *memcg)
PAGE_SIZE);
seq_buf_printf(&s, "slab_reclaimable %llu\n",
- (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
- PAGE_SIZE);
+ (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
seq_buf_printf(&s, "slab_unreclaimable %llu\n",
- (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
- PAGE_SIZE);
+ (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
/* Accumulated memory events */
@@ -1560,15 +1663,21 @@ static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
.gfp_mask = gfp_mask,
.order = order,
};
- bool ret;
+ bool ret = true;
if (mutex_lock_killable(&oom_lock))
return true;
+
+ if (mem_cgroup_margin(memcg) >= (1 << order))
+ goto unlock;
+
/*
* A few threads which were not waiting at mutex_lock_killable() can
* fail to bail out. Therefore, check again after holding oom_lock.
*/
ret = should_force_charge() || out_of_memory(&oc);
+
+unlock:
mutex_unlock(&oom_lock);
return ret;
}
@@ -2039,6 +2148,12 @@ EXPORT_SYMBOL(unlock_page_memcg);
struct memcg_stock_pcp {
struct mem_cgroup *cached; /* this never be root cgroup */
unsigned int nr_pages;
+
+#ifdef CONFIG_MEMCG_KMEM
+ struct obj_cgroup *cached_objcg;
+ unsigned int nr_bytes;
+#endif
+
struct work_struct work;
unsigned long flags;
#define FLUSHING_CACHED_CHARGE 0
@@ -2046,6 +2161,22 @@ struct memcg_stock_pcp {
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static DEFINE_MUTEX(percpu_charge_mutex);
+#ifdef CONFIG_MEMCG_KMEM
+static void drain_obj_stock(struct memcg_stock_pcp *stock);
+static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg);
+
+#else
+static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
+{
+}
+static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
+{
+ return false;
+}
+#endif
+
/**
* consume_stock: Try to consume stocked charge on this cpu.
* @memcg: memcg to consume from.
@@ -2086,13 +2217,17 @@ static void drain_stock(struct memcg_stock_pcp *stock)
{
struct mem_cgroup *old = stock->cached;
+ if (!old)
+ return;
+
if (stock->nr_pages) {
page_counter_uncharge(&old->memory, stock->nr_pages);
if (do_memsw_account())
page_counter_uncharge(&old->memsw, stock->nr_pages);
- css_put_many(&old->css, stock->nr_pages);
stock->nr_pages = 0;
}
+
+ css_put(&old->css);
stock->cached = NULL;
}
@@ -2108,6 +2243,7 @@ static void drain_local_stock(struct work_struct *dummy)
local_irq_save(flags);
stock = this_cpu_ptr(&memcg_stock);
+ drain_obj_stock(stock);
drain_stock(stock);
clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
@@ -2128,6 +2264,7 @@ static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
stock = this_cpu_ptr(&memcg_stock);
if (stock->cached != memcg) { /* reset if necessary */
drain_stock(stock);
+ css_get(&memcg->css);
stock->cached = memcg;
}
stock->nr_pages += nr_pages;
@@ -2166,6 +2303,8 @@ static void drain_all_stock(struct mem_cgroup *root_memcg)
if (memcg && stock->nr_pages &&
mem_cgroup_is_descendant(memcg, root_memcg))
flush = true;
+ if (obj_stock_flush_required(stock, root_memcg))
+ flush = true;
rcu_read_unlock();
if (flush &&
@@ -2228,18 +2367,29 @@ static int memcg_hotplug_cpu_dead(unsigned int cpu)
return 0;
}
-static void reclaim_high(struct mem_cgroup *memcg,
- unsigned int nr_pages,
- gfp_t gfp_mask)
+static unsigned long reclaim_high(struct mem_cgroup *memcg,
+ unsigned int nr_pages,
+ gfp_t gfp_mask)
{
+ unsigned long nr_reclaimed = 0;
+
do {
+ unsigned long pflags;
+
if (page_counter_read(&memcg->memory) <=
READ_ONCE(memcg->memory.high))
continue;
+
memcg_memory_event(memcg, MEMCG_HIGH);
- try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
+
+ psi_memstall_enter(&pflags);
+ nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
+ gfp_mask, true);
+ psi_memstall_leave(&pflags);
} while ((memcg = parent_mem_cgroup(memcg)) &&
!mem_cgroup_is_root(memcg));
+
+ return nr_reclaimed;
}
static void high_work_func(struct work_struct *work)
@@ -2395,16 +2545,32 @@ void mem_cgroup_handle_over_high(void)
{
unsigned long penalty_jiffies;
unsigned long pflags;
+ unsigned long nr_reclaimed;
unsigned int nr_pages = current->memcg_nr_pages_over_high;
+ int nr_retries = MAX_RECLAIM_RETRIES;
struct mem_cgroup *memcg;
+ bool in_retry = false;
if (likely(!nr_pages))
return;
memcg = get_mem_cgroup_from_mm(current->mm);
- reclaim_high(memcg, nr_pages, GFP_KERNEL);
current->memcg_nr_pages_over_high = 0;
+retry_reclaim:
+ /*
+ * The allocating task should reclaim at least the batch size, but for
+ * subsequent retries we only want to do what's necessary to prevent oom
+ * or breaching resource isolation.
+ *
+ * This is distinct from memory.max or page allocator behaviour because
+ * memory.high is currently batched, whereas memory.max and the page
+ * allocator run every time an allocation is made.
+ */
+ nr_reclaimed = reclaim_high(memcg,
+ in_retry ? SWAP_CLUSTER_MAX : nr_pages,
+ GFP_KERNEL);
+
/*
* memory.high is breached and reclaim is unable to keep up. Throttle
* allocators proactively to slow down excessive growth.
@@ -2432,6 +2598,16 @@ void mem_cgroup_handle_over_high(void)
goto out;
/*
+ * If reclaim is making forward progress but we're still over
+ * memory.high, we want to encourage that rather than doing allocator
+ * throttling.
+ */
+ if (nr_reclaimed || nr_retries--) {
+ in_retry = true;
+ goto retry_reclaim;
+ }
+
+ /*
* If we exit early, we're guaranteed to die (since
* schedule_timeout_killable sets TASK_KILLABLE). This means we don't
* need to account for any ill-begotten jiffies to pay them off later.
@@ -2448,13 +2624,14 @@ static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
unsigned int nr_pages)
{
unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
- int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ int nr_retries = MAX_RECLAIM_RETRIES;
struct mem_cgroup *mem_over_limit;
struct page_counter *counter;
+ enum oom_status oom_status;
unsigned long nr_reclaimed;
bool may_swap = true;
bool drained = false;
- enum oom_status oom_status;
+ unsigned long pflags;
if (mem_cgroup_is_root(memcg))
return 0;
@@ -2514,8 +2691,10 @@ retry:
memcg_memory_event(mem_over_limit, MEMCG_MAX);
+ psi_memstall_enter(&pflags);
nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
gfp_mask, may_swap);
+ psi_memstall_leave(&pflags);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
goto retry;
@@ -2567,7 +2746,7 @@ retry:
get_order(nr_pages * PAGE_SIZE));
switch (oom_status) {
case OOM_SUCCESS:
- nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ nr_retries = MAX_RECLAIM_RETRIES;
goto retry;
case OOM_FAILED:
goto force;
@@ -2586,12 +2765,10 @@ force:
page_counter_charge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_charge(&memcg->memsw, nr_pages);
- css_get_many(&memcg->css, nr_pages);
return 0;
done_restock:
- css_get_many(&memcg->css, batch);
if (batch > nr_pages)
refill_stock(memcg, batch - nr_pages);
@@ -2649,8 +2826,6 @@ static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
page_counter_uncharge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_uncharge(&memcg->memsw, nr_pages);
-
- css_put_many(&memcg->css, nr_pages);
}
#endif
@@ -2669,6 +2844,26 @@ static void commit_charge(struct page *page, struct mem_cgroup *memcg)
}
#ifdef CONFIG_MEMCG_KMEM
+int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
+ gfp_t gfp)
+{
+ unsigned int objects = objs_per_slab_page(s, page);
+ void *vec;
+
+ vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
+ page_to_nid(page));
+ if (!vec)
+ return -ENOMEM;
+
+ if (cmpxchg(&page->obj_cgroups, NULL,
+ (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
+ kfree(vec);
+ else
+ kmemleak_not_leak(vec);
+
+ return 0;
+}
+
/*
* Returns a pointer to the memory cgroup to which the kernel object is charged.
*
@@ -2685,17 +2880,50 @@ struct mem_cgroup *mem_cgroup_from_obj(void *p)
page = virt_to_head_page(p);
/*
- * Slab pages don't have page->mem_cgroup set because corresponding
- * kmem caches can be reparented during the lifetime. That's why
- * memcg_from_slab_page() should be used instead.
+ * Slab objects are accounted individually, not per-page.
+ * Memcg membership data for each individual object is saved in
+ * the page->obj_cgroups.
*/
- if (PageSlab(page))
- return memcg_from_slab_page(page);
+ if (page_has_obj_cgroups(page)) {
+ struct obj_cgroup *objcg;
+ unsigned int off;
+
+ off = obj_to_index(page->slab_cache, page, p);
+ objcg = page_obj_cgroups(page)[off];
+ if (objcg)
+ return obj_cgroup_memcg(objcg);
+
+ return NULL;
+ }
/* All other pages use page->mem_cgroup */
return page->mem_cgroup;
}
+__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
+{
+ struct obj_cgroup *objcg = NULL;
+ struct mem_cgroup *memcg;
+
+ if (unlikely(!current->mm && !current->active_memcg))
+ return NULL;
+
+ rcu_read_lock();
+ if (unlikely(current->active_memcg))
+ memcg = rcu_dereference(current->active_memcg);
+ else
+ memcg = mem_cgroup_from_task(current);
+
+ for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
+ objcg = rcu_dereference(memcg->objcg);
+ if (objcg && obj_cgroup_tryget(objcg))
+ break;
+ }
+ rcu_read_unlock();
+
+ return objcg;
+}
+
static int memcg_alloc_cache_id(void)
{
int id, size;
@@ -2721,9 +2949,7 @@ static int memcg_alloc_cache_id(void)
else if (size > MEMCG_CACHES_MAX_SIZE)
size = MEMCG_CACHES_MAX_SIZE;
- err = memcg_update_all_caches(size);
- if (!err)
- err = memcg_update_all_list_lrus(size);
+ err = memcg_update_all_list_lrus(size);
if (!err)
memcg_nr_cache_ids = size;
@@ -2741,150 +2967,6 @@ static void memcg_free_cache_id(int id)
ida_simple_remove(&memcg_cache_ida, id);
}
-struct memcg_kmem_cache_create_work {
- struct mem_cgroup *memcg;
- struct kmem_cache *cachep;
- struct work_struct work;
-};
-
-static void memcg_kmem_cache_create_func(struct work_struct *w)
-{
- struct memcg_kmem_cache_create_work *cw =
- container_of(w, struct memcg_kmem_cache_create_work, work);
- struct mem_cgroup *memcg = cw->memcg;
- struct kmem_cache *cachep = cw->cachep;
-
- memcg_create_kmem_cache(memcg, cachep);
-
- css_put(&memcg->css);
- kfree(cw);
-}
-
-/*
- * Enqueue the creation of a per-memcg kmem_cache.
- */
-static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
- struct kmem_cache *cachep)
-{
- struct memcg_kmem_cache_create_work *cw;
-
- if (!css_tryget_online(&memcg->css))
- return;
-
- cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
- if (!cw) {
- css_put(&memcg->css);
- return;
- }
-
- cw->memcg = memcg;
- cw->cachep = cachep;
- INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
-
- queue_work(memcg_kmem_cache_wq, &cw->work);
-}
-
-static inline bool memcg_kmem_bypass(void)
-{
- if (in_interrupt())
- return true;
-
- /* Allow remote memcg charging in kthread contexts. */
- if ((!current->mm || (current->flags & PF_KTHREAD)) &&
- !current->active_memcg)
- return true;
- return false;
-}
-
-/**
- * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
- * @cachep: the original global kmem cache
- *
- * Return the kmem_cache we're supposed to use for a slab allocation.
- * We try to use the current memcg's version of the cache.
- *
- * If the cache does not exist yet, if we are the first user of it, we
- * create it asynchronously in a workqueue and let the current allocation
- * go through with the original cache.
- *
- * This function takes a reference to the cache it returns to assure it
- * won't get destroyed while we are working with it. Once the caller is
- * done with it, memcg_kmem_put_cache() must be called to release the
- * reference.
- */
-struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
-{
- struct mem_cgroup *memcg;
- struct kmem_cache *memcg_cachep;
- struct memcg_cache_array *arr;
- int kmemcg_id;
-
- VM_BUG_ON(!is_root_cache(cachep));
-
- if (memcg_kmem_bypass())
- return cachep;
-
- rcu_read_lock();
-
- if (unlikely(current->active_memcg))
- memcg = current->active_memcg;
- else
- memcg = mem_cgroup_from_task(current);
-
- if (!memcg || memcg == root_mem_cgroup)
- goto out_unlock;
-
- kmemcg_id = READ_ONCE(memcg->kmemcg_id);
- if (kmemcg_id < 0)
- goto out_unlock;
-
- arr = rcu_dereference(cachep->memcg_params.memcg_caches);
-
- /*
- * Make sure we will access the up-to-date value. The code updating
- * memcg_caches issues a write barrier to match the data dependency
- * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
- */
- memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
-
- /*
- * If we are in a safe context (can wait, and not in interrupt
- * context), we could be be predictable and return right away.
- * This would guarantee that the allocation being performed
- * already belongs in the new cache.
- *
- * However, there are some clashes that can arrive from locking.
- * For instance, because we acquire the slab_mutex while doing
- * memcg_create_kmem_cache, this means no further allocation
- * could happen with the slab_mutex held. So it's better to
- * defer everything.
- *
- * If the memcg is dying or memcg_cache is about to be released,
- * don't bother creating new kmem_caches. Because memcg_cachep
- * is ZEROed as the fist step of kmem offlining, we don't need
- * percpu_ref_tryget_live() here. css_tryget_online() check in
- * memcg_schedule_kmem_cache_create() will prevent us from
- * creation of a new kmem_cache.
- */
- if (unlikely(!memcg_cachep))
- memcg_schedule_kmem_cache_create(memcg, cachep);
- else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
- cachep = memcg_cachep;
-out_unlock:
- rcu_read_unlock();
- return cachep;
-}
-
-/**
- * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
- * @cachep: the cache returned by memcg_kmem_get_cache
- */
-void memcg_kmem_put_cache(struct kmem_cache *cachep)
-{
- if (!is_root_cache(cachep))
- percpu_ref_put(&cachep->memcg_params.refcnt);
-}
-
/**
* __memcg_kmem_charge: charge a number of kernel pages to a memcg
* @memcg: memory cgroup to charge
@@ -2958,6 +3040,7 @@ int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
if (!ret) {
page->mem_cgroup = memcg;
__SetPageKmemcg(page);
+ return 0;
}
}
css_put(&memcg->css);
@@ -2980,13 +3063,146 @@ void __memcg_kmem_uncharge_page(struct page *page, int order)
VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
__memcg_kmem_uncharge(memcg, nr_pages);
page->mem_cgroup = NULL;
+ css_put(&memcg->css);
/* slab pages do not have PageKmemcg flag set */
if (PageKmemcg(page))
__ClearPageKmemcg(page);
+}
+
+static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
+{
+ struct memcg_stock_pcp *stock;
+ unsigned long flags;
+ bool ret = false;
+
+ local_irq_save(flags);
+
+ stock = this_cpu_ptr(&memcg_stock);
+ if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
+ stock->nr_bytes -= nr_bytes;
+ ret = true;
+ }
+
+ local_irq_restore(flags);
+
+ return ret;
+}
+
+static void drain_obj_stock(struct memcg_stock_pcp *stock)
+{
+ struct obj_cgroup *old = stock->cached_objcg;
+
+ if (!old)
+ return;
+
+ if (stock->nr_bytes) {
+ unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
+ unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
+
+ if (nr_pages) {
+ rcu_read_lock();
+ __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
+ rcu_read_unlock();
+ }
+
+ /*
+ * The leftover is flushed to the centralized per-memcg value.
+ * On the next attempt to refill obj stock it will be moved
+ * to a per-cpu stock (probably, on an other CPU), see
+ * refill_obj_stock().
+ *
+ * How often it's flushed is a trade-off between the memory
+ * limit enforcement accuracy and potential CPU contention,
+ * so it might be changed in the future.
+ */
+ atomic_add(nr_bytes, &old->nr_charged_bytes);
+ stock->nr_bytes = 0;
+ }
+
+ obj_cgroup_put(old);
+ stock->cached_objcg = NULL;
+}
+
+static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
+{
+ struct mem_cgroup *memcg;
+
+ if (stock->cached_objcg) {
+ memcg = obj_cgroup_memcg(stock->cached_objcg);
+ if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
+ return true;
+ }
+
+ return false;
+}
+
+static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
+{
+ struct memcg_stock_pcp *stock;
+ unsigned long flags;
+
+ local_irq_save(flags);
+
+ stock = this_cpu_ptr(&memcg_stock);
+ if (stock->cached_objcg != objcg) { /* reset if necessary */
+ drain_obj_stock(stock);
+ obj_cgroup_get(objcg);
+ stock->cached_objcg = objcg;
+ stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
+ }
+ stock->nr_bytes += nr_bytes;
+
+ if (stock->nr_bytes > PAGE_SIZE)
+ drain_obj_stock(stock);
+
+ local_irq_restore(flags);
+}
+
+int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
+{
+ struct mem_cgroup *memcg;
+ unsigned int nr_pages, nr_bytes;
+ int ret;
+
+ if (consume_obj_stock(objcg, size))
+ return 0;
+
+ /*
+ * In theory, memcg->nr_charged_bytes can have enough
+ * pre-charged bytes to satisfy the allocation. However,
+ * flushing memcg->nr_charged_bytes requires two atomic
+ * operations, and memcg->nr_charged_bytes can't be big,
+ * so it's better to ignore it and try grab some new pages.
+ * memcg->nr_charged_bytes will be flushed in
+ * refill_obj_stock(), called from this function or
+ * independently later.
+ */
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ css_get(&memcg->css);
+ rcu_read_unlock();
+
+ nr_pages = size >> PAGE_SHIFT;
+ nr_bytes = size & (PAGE_SIZE - 1);
+
+ if (nr_bytes)
+ nr_pages += 1;
- css_put_many(&memcg->css, nr_pages);
+ ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
+ if (!ret && nr_bytes)
+ refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
+
+ css_put(&memcg->css);
+ return ret;
}
+
+void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
+{
+ refill_obj_stock(objcg, size);
+}
+
#endif /* CONFIG_MEMCG_KMEM */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
@@ -2997,13 +3213,16 @@ void __memcg_kmem_uncharge_page(struct page *page, int order)
*/
void mem_cgroup_split_huge_fixup(struct page *head)
{
+ struct mem_cgroup *memcg = head->mem_cgroup;
int i;
if (mem_cgroup_disabled())
return;
- for (i = 1; i < HPAGE_PMD_NR; i++)
- head[i].mem_cgroup = head->mem_cgroup;
+ for (i = 1; i < HPAGE_PMD_NR; i++) {
+ css_get(&memcg->css);
+ head[i].mem_cgroup = memcg;
+ }
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
@@ -3207,7 +3426,7 @@ static inline bool memcg_has_children(struct mem_cgroup *memcg)
*/
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
- int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ int nr_retries = MAX_RECLAIM_RETRIES;
/* we call try-to-free pages for make this cgroup empty */
lru_add_drain_all();
@@ -3404,6 +3623,7 @@ static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
#ifdef CONFIG_MEMCG_KMEM
static int memcg_online_kmem(struct mem_cgroup *memcg)
{
+ struct obj_cgroup *objcg;
int memcg_id;
if (cgroup_memory_nokmem)
@@ -3416,7 +3636,16 @@ static int memcg_online_kmem(struct mem_cgroup *memcg)
if (memcg_id < 0)
return memcg_id;
- static_branch_inc(&memcg_kmem_enabled_key);
+ objcg = obj_cgroup_alloc();
+ if (!objcg) {
+ memcg_free_cache_id(memcg_id);
+ return -ENOMEM;
+ }
+ objcg->memcg = memcg;
+ rcu_assign_pointer(memcg->objcg, objcg);
+
+ static_branch_enable(&memcg_kmem_enabled_key);
+
/*
* A memory cgroup is considered kmem-online as soon as it gets
* kmemcg_id. Setting the id after enabling static branching will
@@ -3425,7 +3654,6 @@ static int memcg_online_kmem(struct mem_cgroup *memcg)
*/
memcg->kmemcg_id = memcg_id;
memcg->kmem_state = KMEM_ONLINE;
- INIT_LIST_HEAD(&memcg->kmem_caches);
return 0;
}
@@ -3438,22 +3666,14 @@ static void memcg_offline_kmem(struct mem_cgroup *memcg)
if (memcg->kmem_state != KMEM_ONLINE)
return;
- /*
- * Clear the online state before clearing memcg_caches array
- * entries. The slab_mutex in memcg_deactivate_kmem_caches()
- * guarantees that no cache will be created for this cgroup
- * after we are done (see memcg_create_kmem_cache()).
- */
+
memcg->kmem_state = KMEM_ALLOCATED;
parent = parent_mem_cgroup(memcg);
if (!parent)
parent = root_mem_cgroup;
- /*
- * Deactivate and reparent kmem_caches.
- */
- memcg_deactivate_kmem_caches(memcg, parent);
+ memcg_reparent_objcgs(memcg, parent);
kmemcg_id = memcg->kmemcg_id;
BUG_ON(kmemcg_id < 0);
@@ -3486,11 +3706,6 @@ static void memcg_free_kmem(struct mem_cgroup *memcg)
/* css_alloc() failed, offlining didn't happen */
if (unlikely(memcg->kmem_state == KMEM_ONLINE))
memcg_offline_kmem(memcg);
-
- if (memcg->kmem_state == KMEM_ALLOCATED) {
- WARN_ON(!list_empty(&memcg->kmem_caches));
- static_branch_dec(&memcg_kmem_enabled_key);
- }
}
#else
static int memcg_online_kmem(struct mem_cgroup *memcg)
@@ -4800,9 +5015,6 @@ static struct cftype mem_cgroup_legacy_files[] = {
(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
{
.name = "kmem.slabinfo",
- .seq_start = memcg_slab_start,
- .seq_next = memcg_slab_next,
- .seq_stop = memcg_slab_stop,
.seq_show = memcg_slab_show,
},
#endif
@@ -5022,6 +5234,7 @@ static struct mem_cgroup *mem_cgroup_alloc(void)
memcg->socket_pressure = jiffies;
#ifdef CONFIG_MEMCG_KMEM
memcg->kmemcg_id = -1;
+ INIT_LIST_HEAD(&memcg->objcg_list);
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
INIT_LIST_HEAD(&memcg->cgwb_list);
@@ -5084,9 +5297,6 @@ mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
/* The following stuff does not apply to the root */
if (!parent) {
-#ifdef CONFIG_MEMCG_KMEM
- INIT_LIST_HEAD(&memcg->kmem_caches);
-#endif
root_mem_cgroup = memcg;
return &memcg->css;
}
@@ -5448,7 +5658,10 @@ static int mem_cgroup_move_account(struct page *page,
*/
smp_mb();
- page->mem_cgroup = to; /* caller should have done css_get */
+ css_get(&to->css);
+ css_put(&from->css);
+
+ page->mem_cgroup = to;
__unlock_page_memcg(from);
@@ -5669,8 +5882,6 @@ static void __mem_cgroup_clear_mc(void)
if (!mem_cgroup_is_root(mc.to))
page_counter_uncharge(&mc.to->memory, mc.moved_swap);
- css_put_many(&mc.to->css, mc.moved_swap);
-
mc.moved_swap = 0;
}
memcg_oom_recover(from);
@@ -6036,7 +6247,7 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ unsigned int nr_retries = MAX_RECLAIM_RETRIES;
bool drained = false;
unsigned long high;
int err;
@@ -6046,8 +6257,6 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
if (err)
return err;
- page_counter_set_high(&memcg->memory, high);
-
for (;;) {
unsigned long nr_pages = page_counter_read(&memcg->memory);
unsigned long reclaimed;
@@ -6071,6 +6280,10 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
break;
}
+ page_counter_set_high(&memcg->memory, high);
+
+ memcg_wb_domain_size_changed(memcg);
+
return nbytes;
}
@@ -6084,7 +6297,7 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
+ unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
bool drained = false;
unsigned long max;
int err;
@@ -6391,40 +6604,42 @@ static unsigned long effective_protection(unsigned long usage,
*
* WARNING: This function is not stateless! It can only be used as part
* of a top-down tree iteration, not for isolated queries.
- *
- * Returns one of the following:
- * MEMCG_PROT_NONE: cgroup memory is not protected
- * MEMCG_PROT_LOW: cgroup memory is protected as long there is
- * an unprotected supply of reclaimable memory from other cgroups.
- * MEMCG_PROT_MIN: cgroup memory is protected
*/
-enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
- struct mem_cgroup *memcg)
+void mem_cgroup_calculate_protection(struct mem_cgroup *root,
+ struct mem_cgroup *memcg)
{
unsigned long usage, parent_usage;
struct mem_cgroup *parent;
if (mem_cgroup_disabled())
- return MEMCG_PROT_NONE;
+ return;
if (!root)
root = root_mem_cgroup;
+
+ /*
+ * Effective values of the reclaim targets are ignored so they
+ * can be stale. Have a look at mem_cgroup_protection for more
+ * details.
+ * TODO: calculation should be more robust so that we do not need
+ * that special casing.
+ */
if (memcg == root)
- return MEMCG_PROT_NONE;
+ return;
usage = page_counter_read(&memcg->memory);
if (!usage)
- return MEMCG_PROT_NONE;
+ return;
parent = parent_mem_cgroup(memcg);
/* No parent means a non-hierarchical mode on v1 memcg */
if (!parent)
- return MEMCG_PROT_NONE;
+ return;
if (parent == root) {
memcg->memory.emin = READ_ONCE(memcg->memory.min);
memcg->memory.elow = READ_ONCE(memcg->memory.low);
- goto out;
+ return;
}
parent_usage = page_counter_read(&parent->memory);
@@ -6438,14 +6653,6 @@ enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
READ_ONCE(memcg->memory.low),
READ_ONCE(parent->memory.elow),
atomic_long_read(&parent->memory.children_low_usage)));
-
-out:
- if (usage <= memcg->memory.emin)
- return MEMCG_PROT_MIN;
- else if (usage <= memcg->memory.elow)
- return MEMCG_PROT_LOW;
- else
- return MEMCG_PROT_NONE;
}
/**
@@ -6498,6 +6705,7 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
if (ret)
goto out_put;
+ css_get(&memcg->css);
commit_charge(page, memcg);
local_irq_disable();
@@ -6552,9 +6760,6 @@ static void uncharge_batch(const struct uncharge_gather *ug)
__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
memcg_check_events(ug->memcg, ug->dummy_page);
local_irq_restore(flags);
-
- if (!mem_cgroup_is_root(ug->memcg))
- css_put_many(&ug->memcg->css, ug->nr_pages);
}
static void uncharge_page(struct page *page, struct uncharge_gather *ug)
@@ -6592,6 +6797,7 @@ static void uncharge_page(struct page *page, struct uncharge_gather *ug)
ug->dummy_page = page;
page->mem_cgroup = NULL;
+ css_put(&ug->memcg->css);
}
static void uncharge_list(struct list_head *page_list)
@@ -6697,8 +6903,8 @@ void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
page_counter_charge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_charge(&memcg->memsw, nr_pages);
- css_get_many(&memcg->css, nr_pages);
+ css_get(&memcg->css);
commit_charge(newpage, memcg);
local_irq_save(flags);
@@ -6821,17 +7027,6 @@ static int __init mem_cgroup_init(void)
{
int cpu, node;
-#ifdef CONFIG_MEMCG_KMEM
- /*
- * Kmem cache creation is mostly done with the slab_mutex held,
- * so use a workqueue with limited concurrency to avoid stalling
- * all worker threads in case lots of cgroups are created and
- * destroyed simultaneously.
- */
- memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
- BUG_ON(!memcg_kmem_cache_wq);
-#endif
-
cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
memcg_hotplug_cpu_dead);
@@ -6935,8 +7130,7 @@ void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
mem_cgroup_charge_statistics(memcg, page, -nr_entries);
memcg_check_events(memcg, page);
- if (!mem_cgroup_is_root(memcg))
- css_put_many(&memcg->css, nr_entries);
+ css_put(&memcg->css);
}
/**