summaryrefslogtreecommitdiffstats
path: root/kernel/locking/mutex.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/locking/mutex.c')
-rw-r--r--kernel/locking/mutex.c63
1 files changed, 56 insertions, 7 deletions
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index d456579d0952..db1913611192 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -94,6 +94,9 @@ static inline unsigned long __owner_flags(unsigned long owner)
return owner & MUTEX_FLAGS;
}
+/*
+ * Returns: __mutex_owner(lock) on failure or NULL on success.
+ */
static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
{
unsigned long owner, curr = (unsigned long)current;
@@ -348,13 +351,16 @@ bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
{
bool ret = true;
- rcu_read_lock();
+ lockdep_assert_preemption_disabled();
+
while (__mutex_owner(lock) == owner) {
/*
* Ensure we emit the owner->on_cpu, dereference _after_
- * checking lock->owner still matches owner. If that fails,
- * owner might point to freed memory. If it still matches,
- * the rcu_read_lock() ensures the memory stays valid.
+ * checking lock->owner still matches owner. And we already
+ * disabled preemption which is equal to the RCU read-side
+ * crital section in optimistic spinning code. Thus the
+ * task_strcut structure won't go away during the spinning
+ * period
*/
barrier();
@@ -374,7 +380,6 @@ bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
cpu_relax();
}
- rcu_read_unlock();
return ret;
}
@@ -387,19 +392,25 @@ static inline int mutex_can_spin_on_owner(struct mutex *lock)
struct task_struct *owner;
int retval = 1;
+ lockdep_assert_preemption_disabled();
+
if (need_resched())
return 0;
- rcu_read_lock();
+ /*
+ * We already disabled preemption which is equal to the RCU read-side
+ * crital section in optimistic spinning code. Thus the task_strcut
+ * structure won't go away during the spinning period.
+ */
owner = __mutex_owner(lock);
/*
* As lock holder preemption issue, we both skip spinning if task is not
* on cpu or its cpu is preempted
*/
+
if (owner)
retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
- rcu_read_unlock();
/*
* If lock->owner is not set, the mutex has been released. Return true
@@ -736,6 +747,44 @@ __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
}
+/**
+ * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
+ * @ww: mutex to lock
+ * @ww_ctx: optional w/w acquire context
+ *
+ * Trylocks a mutex with the optional acquire context; no deadlock detection is
+ * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
+ *
+ * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
+ * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
+ *
+ * A mutex acquired with this function must be released with ww_mutex_unlock.
+ */
+int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
+{
+ if (!ww_ctx)
+ return mutex_trylock(&ww->base);
+
+ MUTEX_WARN_ON(ww->base.magic != &ww->base);
+
+ /*
+ * Reset the wounded flag after a kill. No other process can
+ * race and wound us here, since they can't have a valid owner
+ * pointer if we don't have any locks held.
+ */
+ if (ww_ctx->acquired == 0)
+ ww_ctx->wounded = 0;
+
+ if (__mutex_trylock(&ww->base)) {
+ ww_mutex_set_context_fastpath(ww, ww_ctx);
+ mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
+ return 1;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(ww_mutex_trylock);
+
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)