summaryrefslogtreecommitdiffstats
path: root/kernel/bpf
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/bpf')
-rw-r--r--kernel/bpf/verifier.c103
1 files changed, 91 insertions, 12 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index c1169ee1bc7c..ff3fc21ce99b 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -2749,8 +2749,11 @@ static void mark_all_scalars_precise(struct bpf_verifier_env *env,
/* big hammer: mark all scalars precise in this path.
* pop_stack may still get !precise scalars.
+ * We also skip current state and go straight to first parent state,
+ * because precision markings in current non-checkpointed state are
+ * not needed. See why in the comment in __mark_chain_precision below.
*/
- for (; st; st = st->parent)
+ for (st = st->parent; st; st = st->parent) {
for (i = 0; i <= st->curframe; i++) {
func = st->frame[i];
for (j = 0; j < BPF_REG_FP; j++) {
@@ -2768,8 +2771,88 @@ static void mark_all_scalars_precise(struct bpf_verifier_env *env,
reg->precise = true;
}
}
+ }
}
+/*
+ * __mark_chain_precision() backtracks BPF program instruction sequence and
+ * chain of verifier states making sure that register *regno* (if regno >= 0)
+ * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
+ * SCALARS, as well as any other registers and slots that contribute to
+ * a tracked state of given registers/stack slots, depending on specific BPF
+ * assembly instructions (see backtrack_insns() for exact instruction handling
+ * logic). This backtracking relies on recorded jmp_history and is able to
+ * traverse entire chain of parent states. This process ends only when all the
+ * necessary registers/slots and their transitive dependencies are marked as
+ * precise.
+ *
+ * One important and subtle aspect is that precise marks *do not matter* in
+ * the currently verified state (current state). It is important to understand
+ * why this is the case.
+ *
+ * First, note that current state is the state that is not yet "checkpointed",
+ * i.e., it is not yet put into env->explored_states, and it has no children
+ * states as well. It's ephemeral, and can end up either a) being discarded if
+ * compatible explored state is found at some point or BPF_EXIT instruction is
+ * reached or b) checkpointed and put into env->explored_states, branching out
+ * into one or more children states.
+ *
+ * In the former case, precise markings in current state are completely
+ * ignored by state comparison code (see regsafe() for details). Only
+ * checkpointed ("old") state precise markings are important, and if old
+ * state's register/slot is precise, regsafe() assumes current state's
+ * register/slot as precise and checks value ranges exactly and precisely. If
+ * states turn out to be compatible, current state's necessary precise
+ * markings and any required parent states' precise markings are enforced
+ * after the fact with propagate_precision() logic, after the fact. But it's
+ * important to realize that in this case, even after marking current state
+ * registers/slots as precise, we immediately discard current state. So what
+ * actually matters is any of the precise markings propagated into current
+ * state's parent states, which are always checkpointed (due to b) case above).
+ * As such, for scenario a) it doesn't matter if current state has precise
+ * markings set or not.
+ *
+ * Now, for the scenario b), checkpointing and forking into child(ren)
+ * state(s). Note that before current state gets to checkpointing step, any
+ * processed instruction always assumes precise SCALAR register/slot
+ * knowledge: if precise value or range is useful to prune jump branch, BPF
+ * verifier takes this opportunity enthusiastically. Similarly, when
+ * register's value is used to calculate offset or memory address, exact
+ * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
+ * what we mentioned above about state comparison ignoring precise markings
+ * during state comparison, BPF verifier ignores and also assumes precise
+ * markings *at will* during instruction verification process. But as verifier
+ * assumes precision, it also propagates any precision dependencies across
+ * parent states, which are not yet finalized, so can be further restricted
+ * based on new knowledge gained from restrictions enforced by their children
+ * states. This is so that once those parent states are finalized, i.e., when
+ * they have no more active children state, state comparison logic in
+ * is_state_visited() would enforce strict and precise SCALAR ranges, if
+ * required for correctness.
+ *
+ * To build a bit more intuition, note also that once a state is checkpointed,
+ * the path we took to get to that state is not important. This is crucial
+ * property for state pruning. When state is checkpointed and finalized at
+ * some instruction index, it can be correctly and safely used to "short
+ * circuit" any *compatible* state that reaches exactly the same instruction
+ * index. I.e., if we jumped to that instruction from a completely different
+ * code path than original finalized state was derived from, it doesn't
+ * matter, current state can be discarded because from that instruction
+ * forward having a compatible state will ensure we will safely reach the
+ * exit. States describe preconditions for further exploration, but completely
+ * forget the history of how we got here.
+ *
+ * This also means that even if we needed precise SCALAR range to get to
+ * finalized state, but from that point forward *that same* SCALAR register is
+ * never used in a precise context (i.e., it's precise value is not needed for
+ * correctness), it's correct and safe to mark such register as "imprecise"
+ * (i.e., precise marking set to false). This is what we rely on when we do
+ * not set precise marking in current state. If no child state requires
+ * precision for any given SCALAR register, it's safe to dictate that it can
+ * be imprecise. If any child state does require this register to be precise,
+ * we'll mark it precise later retroactively during precise markings
+ * propagation from child state to parent states.
+ */
static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
int spi)
{
@@ -2787,6 +2870,10 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int r
if (!env->bpf_capable)
return 0;
+ /* Do sanity checks against current state of register and/or stack
+ * slot, but don't set precise flag in current state, as precision
+ * tracking in the current state is unnecessary.
+ */
func = st->frame[frame];
if (regno >= 0) {
reg = &func->regs[regno];
@@ -2794,11 +2881,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int r
WARN_ONCE(1, "backtracing misuse");
return -EFAULT;
}
- if (!reg->precise)
- new_marks = true;
- else
- reg_mask = 0;
- reg->precise = true;
+ new_marks = true;
}
while (spi >= 0) {
@@ -2811,11 +2894,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int r
stack_mask = 0;
break;
}
- if (!reg->precise)
- new_marks = true;
- else
- stack_mask = 0;
- reg->precise = true;
+ new_marks = true;
break;
}
@@ -11534,7 +11613,7 @@ static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
if (env->explore_alu_limits)
return false;
if (rcur->type == SCALAR_VALUE) {
- if (!rold->precise && !rcur->precise)
+ if (!rold->precise)
return true;
/* new val must satisfy old val knowledge */
return range_within(rold, rcur) &&