summaryrefslogtreecommitdiffstats
path: root/drivers/media/i2c/ccs/ccs-reg-access.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/media/i2c/ccs/ccs-reg-access.c')
-rw-r--r--drivers/media/i2c/ccs/ccs-reg-access.c409
1 files changed, 409 insertions, 0 deletions
diff --git a/drivers/media/i2c/ccs/ccs-reg-access.c b/drivers/media/i2c/ccs/ccs-reg-access.c
new file mode 100644
index 000000000000..b776af2a3c33
--- /dev/null
+++ b/drivers/media/i2c/ccs/ccs-reg-access.c
@@ -0,0 +1,409 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * drivers/media/i2c/ccs/ccs-reg-access.c
+ *
+ * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
+ *
+ * Copyright (C) 2020 Intel Corporation
+ * Copyright (C) 2011--2012 Nokia Corporation
+ * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
+ */
+
+#include <asm/unaligned.h>
+
+#include <linux/delay.h>
+#include <linux/i2c.h>
+
+#include "ccs.h"
+#include "ccs-limits.h"
+
+static uint32_t float_to_u32_mul_1000000(struct i2c_client *client,
+ uint32_t phloat)
+{
+ int32_t exp;
+ uint64_t man;
+
+ if (phloat >= 0x80000000) {
+ dev_err(&client->dev, "this is a negative number\n");
+ return 0;
+ }
+
+ if (phloat == 0x7f800000)
+ return ~0; /* Inf. */
+
+ if ((phloat & 0x7f800000) == 0x7f800000) {
+ dev_err(&client->dev, "NaN or other special number\n");
+ return 0;
+ }
+
+ /* Valid cases begin here */
+ if (phloat == 0)
+ return 0; /* Valid zero */
+
+ if (phloat > 0x4f800000)
+ return ~0; /* larger than 4294967295 */
+
+ /*
+ * Unbias exponent (note how phloat is now guaranteed to
+ * have 0 in the high bit)
+ */
+ exp = ((int32_t)phloat >> 23) - 127;
+
+ /* Extract mantissa, add missing '1' bit and it's in MHz */
+ man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
+
+ if (exp < 0)
+ man >>= -exp;
+ else
+ man <<= exp;
+
+ man >>= 23; /* Remove mantissa bias */
+
+ return man & 0xffffffff;
+}
+
+
+/*
+ * Read a 8/16/32-bit i2c register. The value is returned in 'val'.
+ * Returns zero if successful, or non-zero otherwise.
+ */
+static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len,
+ u32 *val)
+{
+ struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
+ struct i2c_msg msg;
+ unsigned char data_buf[sizeof(u32)] = { 0 };
+ unsigned char offset_buf[sizeof(u16)];
+ int r;
+
+ if (len > sizeof(data_buf))
+ return -EINVAL;
+
+ msg.addr = client->addr;
+ msg.flags = 0;
+ msg.len = sizeof(offset_buf);
+ msg.buf = offset_buf;
+ put_unaligned_be16(reg, offset_buf);
+
+ r = i2c_transfer(client->adapter, &msg, 1);
+ if (r != 1) {
+ if (r >= 0)
+ r = -EBUSY;
+ goto err;
+ }
+
+ msg.len = len;
+ msg.flags = I2C_M_RD;
+ msg.buf = &data_buf[sizeof(data_buf) - len];
+
+ r = i2c_transfer(client->adapter, &msg, 1);
+ if (r != 1) {
+ if (r >= 0)
+ r = -EBUSY;
+ goto err;
+ }
+
+ *val = get_unaligned_be32(data_buf);
+
+ return 0;
+
+err:
+ dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r);
+
+ return r;
+}
+
+/* Read a register using 8-bit access only. */
+static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg,
+ u16 len, u32 *val)
+{
+ unsigned int i;
+ int rval;
+
+ *val = 0;
+
+ for (i = 0; i < len; i++) {
+ u32 val8;
+
+ rval = ____ccs_read_addr(sensor, reg + i, 1, &val8);
+ if (rval < 0)
+ return rval;
+ *val |= val8 << ((len - i - 1) << 3);
+ }
+
+ return 0;
+}
+
+unsigned int ccs_reg_width(u32 reg)
+{
+ if (reg & CCS_FL_16BIT)
+ return sizeof(uint16_t);
+ if (reg & CCS_FL_32BIT)
+ return sizeof(uint32_t);
+
+ return sizeof(uint8_t);
+}
+
+static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val)
+{
+ if (val >> 10 > U32_MAX / 15625) {
+ dev_warn(&client->dev, "value %u overflows!\n", val);
+ return U32_MAX;
+ }
+
+ return ((val >> 10) * 15625) +
+ (val & GENMASK(9, 0)) * 15625 / 1024;
+}
+
+u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val)
+{
+ struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
+
+ if (reg & CCS_FL_FLOAT_IREAL) {
+ if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) &
+ CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL)
+ val = ireal32_to_u32_mul_1000000(client, val);
+ else
+ val = float_to_u32_mul_1000000(client, val);
+ } else if (reg & CCS_FL_IREAL) {
+ val = ireal32_to_u32_mul_1000000(client, val);
+ }
+
+ return val;
+}
+
+/*
+ * Read a 8/16/32-bit i2c register. The value is returned in 'val'.
+ * Returns zero if successful, or non-zero otherwise.
+ */
+static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val,
+ bool only8, bool conv)
+{
+ unsigned int len = ccs_reg_width(reg);
+ int rval;
+
+ if (!only8)
+ rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val);
+ else
+ rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len,
+ val);
+ if (rval < 0)
+ return rval;
+
+ if (!conv)
+ return 0;
+
+ *val = ccs_reg_conv(sensor, reg, *val);
+
+ return 0;
+}
+
+static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs,
+ u32 reg, u32 *val)
+{
+ unsigned int width = ccs_reg_width(reg);
+ size_t i;
+
+ for (i = 0; i < num_regs; i++, regs++) {
+ uint8_t *data;
+
+ if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width)
+ continue;
+
+ if (regs->addr > CCS_REG_ADDR(reg))
+ break;
+
+ data = &regs->value[CCS_REG_ADDR(reg) - regs->addr];
+
+ switch (width) {
+ case sizeof(uint8_t):
+ *val = *data;
+ break;
+ case sizeof(uint16_t):
+ *val = get_unaligned_be16(data);
+ break;
+ case sizeof(uint32_t):
+ *val = get_unaligned_be32(data);
+ break;
+ default:
+ WARN_ON(1);
+ return -EINVAL;
+ }
+
+ return 0;
+ }
+
+ return -ENOENT;
+}
+
+static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val)
+{
+ if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs,
+ sensor->sdata.num_sensor_read_only_regs,
+ reg, val))
+ return 0;
+
+ return __ccs_read_data(sensor->mdata.module_read_only_regs,
+ sensor->mdata.num_module_read_only_regs,
+ reg, val);
+}
+
+static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val,
+ bool force8, bool quirk, bool conv, bool data)
+{
+ int rval;
+
+ if (data) {
+ rval = ccs_read_data(sensor, reg, val);
+ if (!rval)
+ return 0;
+ }
+
+ if (quirk) {
+ *val = 0;
+ rval = ccs_call_quirk(sensor, reg_access, false, &reg, val);
+ if (rval == -ENOIOCTLCMD)
+ return 0;
+ if (rval < 0)
+ return rval;
+
+ if (force8)
+ return __ccs_read_addr(sensor, reg, val, true, conv);
+ }
+
+ return __ccs_read_addr(sensor, reg, val,
+ ccs_needs_quirk(sensor,
+ CCS_QUIRK_FLAG_8BIT_READ_ONLY),
+ conv);
+}
+
+int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val)
+{
+ return ccs_read_addr_raw(sensor, reg, val, false, true, true, true);
+}
+
+int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val)
+{
+ return ccs_read_addr_raw(sensor, reg, val, true, true, true, true);
+}
+
+int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val)
+{
+ return ccs_read_addr_raw(sensor, reg, val, false, true, false, true);
+}
+
+static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg)
+{
+ unsigned int retries;
+ int r;
+
+ for (retries = 0; retries < 10; retries++) {
+ /*
+ * Due to unknown reason sensor stops responding. This
+ * loop is a temporaty solution until the root cause
+ * is found.
+ */
+ r = i2c_transfer(client->adapter, msg, 1);
+ if (r != 1) {
+ usleep_range(1000, 2000);
+ continue;
+ }
+
+ if (retries)
+ dev_err(&client->dev,
+ "sensor i2c stall encountered. retries: %d\n",
+ retries);
+ return 0;
+ }
+
+ return r;
+}
+
+int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val)
+{
+ struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
+ struct i2c_msg msg;
+ unsigned char data[6];
+ unsigned int len = ccs_reg_width(reg);
+ int r;
+
+ if (len > sizeof(data) - 2)
+ return -EINVAL;
+
+ msg.addr = client->addr;
+ msg.flags = 0; /* Write */
+ msg.len = 2 + len;
+ msg.buf = data;
+
+ put_unaligned_be16(CCS_REG_ADDR(reg), data);
+ put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2);
+
+ dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n",
+ CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1,
+ ccs_reg_width(reg) << 1, val, val);
+
+ r = ccs_write_retry(client, &msg);
+ if (r)
+ dev_err(&client->dev,
+ "wrote 0x%x to offset 0x%x error %d\n", val,
+ CCS_REG_ADDR(reg), r);
+
+ return r;
+}
+
+/*
+ * Write to a 8/16-bit register.
+ * Returns zero if successful, or non-zero otherwise.
+ */
+int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val)
+{
+ int rval;
+
+ rval = ccs_call_quirk(sensor, reg_access, true, &reg, &val);
+ if (rval == -ENOIOCTLCMD)
+ return 0;
+ if (rval < 0)
+ return rval;
+
+ return ccs_write_addr_no_quirk(sensor, reg, val);
+}
+
+#define MAX_WRITE_LEN 32U
+
+int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs,
+ size_t num_regs)
+{
+ struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
+ unsigned char buf[2 + MAX_WRITE_LEN];
+ struct i2c_msg msg = {
+ .addr = client->addr,
+ .buf = buf,
+ };
+ size_t i;
+
+ for (i = 0; i < num_regs; i++, regs++) {
+ unsigned char *regdata = regs->value;
+ unsigned int j;
+
+ for (j = 0; j < regs->len;
+ j += msg.len - 2, regdata += msg.len - 2) {
+ int rval;
+
+ msg.len = min(regs->len - j, MAX_WRITE_LEN);
+
+ put_unaligned_be16(regs->addr + j, buf);
+ memcpy(buf + 2, regdata, msg.len);
+ msg.len += 2;
+
+ rval = ccs_write_retry(client, &msg);
+ if (rval) {
+ dev_err(&client->dev,
+ "error writing %u octets to address 0x%4.4x\n",
+ msg.len, regs->addr + j);
+ return rval;
+ }
+ }
+ }
+
+ return 0;
+}