summaryrefslogtreecommitdiffstats
path: root/Documentation/virt/kvm/api.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/virt/kvm/api.rst')
-rw-r--r--Documentation/virt/kvm/api.rst36
1 files changed, 28 insertions, 8 deletions
diff --git a/Documentation/virt/kvm/api.rst b/Documentation/virt/kvm/api.rst
index eee9f857a986..773e4b202f47 100644
--- a/Documentation/virt/kvm/api.rst
+++ b/Documentation/virt/kvm/api.rst
@@ -7921,7 +7921,7 @@ regardless of what has actually been exposed through the CPUID leaf.
8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG_RING_ACQ_REL
----------------------------------------------------------
-:Architectures: x86
+:Architectures: x86, arm64
:Parameters: args[0] - size of the dirty log ring
KVM is capable of tracking dirty memory using ring buffers that are
@@ -8003,13 +8003,6 @@ flushing is done by the KVM_GET_DIRTY_LOG ioctl). To achieve that, one
needs to kick the vcpu out of KVM_RUN using a signal. The resulting
vmexit ensures that all dirty GFNs are flushed to the dirty rings.
-NOTE: the capability KVM_CAP_DIRTY_LOG_RING and the corresponding
-ioctl KVM_RESET_DIRTY_RINGS are mutual exclusive to the existing ioctls
-KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG. After enabling
-KVM_CAP_DIRTY_LOG_RING with an acceptable dirty ring size, the virtual
-machine will switch to ring-buffer dirty page tracking and further
-KVM_GET_DIRTY_LOG or KVM_CLEAR_DIRTY_LOG ioctls will fail.
-
NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the only capability that
should be exposed by weakly ordered architecture, in order to indicate
the additional memory ordering requirements imposed on userspace when
@@ -8018,6 +8011,33 @@ Architecture with TSO-like ordering (such as x86) are allowed to
expose both KVM_CAP_DIRTY_LOG_RING and KVM_CAP_DIRTY_LOG_RING_ACQ_REL
to userspace.
+After enabling the dirty rings, the userspace needs to detect the
+capability of KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP to see whether the
+ring structures can be backed by per-slot bitmaps. With this capability
+advertised, it means the architecture can dirty guest pages without
+vcpu/ring context, so that some of the dirty information will still be
+maintained in the bitmap structure. KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP
+can't be enabled if the capability of KVM_CAP_DIRTY_LOG_RING_ACQ_REL
+hasn't been enabled, or any memslot has been existing.
+
+Note that the bitmap here is only a backup of the ring structure. The
+use of the ring and bitmap combination is only beneficial if there is
+only a very small amount of memory that is dirtied out of vcpu/ring
+context. Otherwise, the stand-alone per-slot bitmap mechanism needs to
+be considered.
+
+To collect dirty bits in the backup bitmap, userspace can use the same
+KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG isn't needed as long as all
+the generation of the dirty bits is done in a single pass. Collecting
+the dirty bitmap should be the very last thing that the VMM does before
+considering the state as complete. VMM needs to ensure that the dirty
+state is final and avoid missing dirty pages from another ioctl ordered
+after the bitmap collection.
+
+NOTE: One example of using the backup bitmap is saving arm64 vgic/its
+tables through KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_SAVE_TABLES} command on
+KVM device "kvm-arm-vgic-its" when dirty ring is enabled.
+
8.30 KVM_CAP_XEN_HVM
--------------------