summaryrefslogtreecommitdiffstats
path: root/kernel/locking/mcs_spinlock.c
diff options
context:
space:
mode:
authorDavidlohr Bueso <dave@stgolabs.net>2015-01-06 11:45:07 -0800
committerIngo Molnar <mingo@kernel.org>2015-01-14 15:07:32 +0100
commitd84b6728c54dcf73bcef3e3f7cf6767e2d224e39 (patch)
treec3d8f60aee0a71f79666e3d47df73deff975a5ab /kernel/locking/mcs_spinlock.c
parent4bd19084faa61a8c68586e74f03f5776179f65c2 (diff)
downloadlinux-d84b6728c54dcf73bcef3e3f7cf6767e2d224e39.tar.bz2
locking/mcs: Better differentiate between MCS variants
We have two flavors of the MCS spinlock: standard and cancelable (OSQ). While each one is independent of the other, we currently mix and match them. This patch: - Moves the OSQ code out of mcs_spinlock.h (which only deals with the traditional version) into include/linux/osq_lock.h. No unnecessary code is added to the more global header file, anything locks that make use of OSQ must include it anyway. - Renames mcs_spinlock.c to osq_lock.c. This file only contains osq code. - Introduces a CONFIG_LOCK_SPIN_ON_OWNER in order to only build osq_lock if there is support for it. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1420573509-24774-5-git-send-email-dave@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/locking/mcs_spinlock.c')
-rw-r--r--kernel/locking/mcs_spinlock.c208
1 files changed, 0 insertions, 208 deletions
diff --git a/kernel/locking/mcs_spinlock.c b/kernel/locking/mcs_spinlock.c
deleted file mode 100644
index 9887a905a762..000000000000
--- a/kernel/locking/mcs_spinlock.c
+++ /dev/null
@@ -1,208 +0,0 @@
-#include <linux/percpu.h>
-#include <linux/sched.h>
-#include "mcs_spinlock.h"
-
-#ifdef CONFIG_SMP
-
-/*
- * An MCS like lock especially tailored for optimistic spinning for sleeping
- * lock implementations (mutex, rwsem, etc).
- *
- * Using a single mcs node per CPU is safe because sleeping locks should not be
- * called from interrupt context and we have preemption disabled while
- * spinning.
- */
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
-
-/*
- * We use the value 0 to represent "no CPU", thus the encoded value
- * will be the CPU number incremented by 1.
- */
-static inline int encode_cpu(int cpu_nr)
-{
- return cpu_nr + 1;
-}
-
-static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
-{
- int cpu_nr = encoded_cpu_val - 1;
-
- return per_cpu_ptr(&osq_node, cpu_nr);
-}
-
-/*
- * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
- * Can return NULL in case we were the last queued and we updated @lock instead.
- */
-static inline struct optimistic_spin_node *
-osq_wait_next(struct optimistic_spin_queue *lock,
- struct optimistic_spin_node *node,
- struct optimistic_spin_node *prev)
-{
- struct optimistic_spin_node *next = NULL;
- int curr = encode_cpu(smp_processor_id());
- int old;
-
- /*
- * If there is a prev node in queue, then the 'old' value will be
- * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if
- * we're currently last in queue, then the queue will then become empty.
- */
- old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;
-
- for (;;) {
- if (atomic_read(&lock->tail) == curr &&
- atomic_cmpxchg(&lock->tail, curr, old) == curr) {
- /*
- * We were the last queued, we moved @lock back. @prev
- * will now observe @lock and will complete its
- * unlock()/unqueue().
- */
- break;
- }
-
- /*
- * We must xchg() the @node->next value, because if we were to
- * leave it in, a concurrent unlock()/unqueue() from
- * @node->next might complete Step-A and think its @prev is
- * still valid.
- *
- * If the concurrent unlock()/unqueue() wins the race, we'll
- * wait for either @lock to point to us, through its Step-B, or
- * wait for a new @node->next from its Step-C.
- */
- if (node->next) {
- next = xchg(&node->next, NULL);
- if (next)
- break;
- }
-
- cpu_relax_lowlatency();
- }
-
- return next;
-}
-
-bool osq_lock(struct optimistic_spin_queue *lock)
-{
- struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
- struct optimistic_spin_node *prev, *next;
- int curr = encode_cpu(smp_processor_id());
- int old;
-
- node->locked = 0;
- node->next = NULL;
- node->cpu = curr;
-
- old = atomic_xchg(&lock->tail, curr);
- if (old == OSQ_UNLOCKED_VAL)
- return true;
-
- prev = decode_cpu(old);
- node->prev = prev;
- ACCESS_ONCE(prev->next) = node;
-
- /*
- * Normally @prev is untouchable after the above store; because at that
- * moment unlock can proceed and wipe the node element from stack.
- *
- * However, since our nodes are static per-cpu storage, we're
- * guaranteed their existence -- this allows us to apply
- * cmpxchg in an attempt to undo our queueing.
- */
-
- while (!smp_load_acquire(&node->locked)) {
- /*
- * If we need to reschedule bail... so we can block.
- */
- if (need_resched())
- goto unqueue;
-
- cpu_relax_lowlatency();
- }
- return true;
-
-unqueue:
- /*
- * Step - A -- stabilize @prev
- *
- * Undo our @prev->next assignment; this will make @prev's
- * unlock()/unqueue() wait for a next pointer since @lock points to us
- * (or later).
- */
-
- for (;;) {
- if (prev->next == node &&
- cmpxchg(&prev->next, node, NULL) == node)
- break;
-
- /*
- * We can only fail the cmpxchg() racing against an unlock(),
- * in which case we should observe @node->locked becomming
- * true.
- */
- if (smp_load_acquire(&node->locked))
- return true;
-
- cpu_relax_lowlatency();
-
- /*
- * Or we race against a concurrent unqueue()'s step-B, in which
- * case its step-C will write us a new @node->prev pointer.
- */
- prev = ACCESS_ONCE(node->prev);
- }
-
- /*
- * Step - B -- stabilize @next
- *
- * Similar to unlock(), wait for @node->next or move @lock from @node
- * back to @prev.
- */
-
- next = osq_wait_next(lock, node, prev);
- if (!next)
- return false;
-
- /*
- * Step - C -- unlink
- *
- * @prev is stable because its still waiting for a new @prev->next
- * pointer, @next is stable because our @node->next pointer is NULL and
- * it will wait in Step-A.
- */
-
- ACCESS_ONCE(next->prev) = prev;
- ACCESS_ONCE(prev->next) = next;
-
- return false;
-}
-
-void osq_unlock(struct optimistic_spin_queue *lock)
-{
- struct optimistic_spin_node *node, *next;
- int curr = encode_cpu(smp_processor_id());
-
- /*
- * Fast path for the uncontended case.
- */
- if (likely(atomic_cmpxchg(&lock->tail, curr, OSQ_UNLOCKED_VAL) == curr))
- return;
-
- /*
- * Second most likely case.
- */
- node = this_cpu_ptr(&osq_node);
- next = xchg(&node->next, NULL);
- if (next) {
- ACCESS_ONCE(next->locked) = 1;
- return;
- }
-
- next = osq_wait_next(lock, node, NULL);
- if (next)
- ACCESS_ONCE(next->locked) = 1;
-}
-
-#endif
-