summaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-08-01 11:49:06 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2022-08-01 11:49:06 -0700
commitb167fdffe9e737007cbf7c691cde5fa489ca58d7 (patch)
tree05f36cf3d602cf7e69d22e2737dd4e8fb9849bfa /drivers
parent0dd1cabe8a4a568252ca70f7530c3ca10e728513 (diff)
parentc17a6ff9321355487d7d5ccaa7d406a0ea06b6c4 (diff)
downloadlinux-b167fdffe9e737007cbf7c691cde5fa489ca58d7.tar.bz2
Merge tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "Load-balancing improvements: - Improve NUMA balancing on AMD Zen systems for affine workloads. - Improve the handling of reduced-capacity CPUs in load-balancing. - Energy Model improvements: fix & refine all the energy fairness metrics (PELT), and remove the conservative threshold requiring 6% energy savings to migrate a task. Doing this improves power efficiency for most workloads, and also increases the reliability of energy-efficiency scheduling. - Optimize/tweak select_idle_cpu() to spend (much) less time searching for an idle CPU on overloaded systems. There's reports of several milliseconds spent there on large systems with large workloads ... [ Since the search logic changed, there might be behavioral side effects. ] - Improve NUMA imbalance behavior. On certain systems with spare capacity, initial placement of tasks is non-deterministic, and such an artificial placement imbalance can persist for a long time, hurting (and sometimes helping) performance. The fix is to make fork-time task placement consistent with runtime NUMA balancing placement. Note that some performance regressions were reported against this, caused by workloads that are not memory bandwith limited, which benefit from the artificial locality of the placement bug(s). Mel Gorman's conclusion, with which we concur, was that consistency is better than random workload benefits from non-deterministic bugs: "Given there is no crystal ball and it's a tradeoff, I think it's better to be consistent and use similar logic at both fork time and runtime even if it doesn't have universal benefit." - Improve core scheduling by fixing a bug in sched_core_update_cookie() that caused unnecessary forced idling. - Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly woken tasks. - Fix a newidle balancing bug that introduced unnecessary wakeup latencies. ABI improvements/fixes: - Do not check capabilities and do not issue capability check denial messages when a scheduler syscall doesn't require privileges. (Such as increasing niceness.) - Add forced-idle accounting to cgroups too. - Fix/improve the RSEQ ABI to not just silently accept unknown flags. (No existing tooling is known to have learned to rely on the previous behavior.) - Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags. Optimizations: - Optimize & simplify leaf_cfs_rq_list() - Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg(). Misc fixes & cleanups: - Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems. - Fix a full-NOHZ bug that can in some cases result in the tick not being re-enabled when the last SCHED_RT task is gone from a runqueue but there's still SCHED_OTHER tasks around. - Various PREEMPT_RT related fixes. - Misc cleanups & smaller fixes" * tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) rseq: Kill process when unknown flags are encountered in ABI structures rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags sched/core: Fix the bug that task won't enqueue into core tree when update cookie nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt() sched/core: Always flush pending blk_plug sched/fair: fix case with reduced capacity CPU sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling sched/core: add forced idle accounting for cgroups sched/fair: Remove the energy margin in feec() sched/fair: Remove task_util from effective utilization in feec() sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu() sched/fair: Rename select_idle_mask to select_rq_mask sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util() sched/fair: Decay task PELT values during wakeup migration sched/fair: Provide u64 read for 32-bits arch helper sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg sched: only perform capability check on privileged operation sched: Remove unused function group_first_cpu() sched/fair: Remove redundant word " *" selftests/rseq: check if libc rseq support is registered ...
Diffstat (limited to 'drivers')
-rw-r--r--drivers/powercap/dtpm_cpu.c33
-rw-r--r--drivers/thermal/cpufreq_cooling.c6
2 files changed, 11 insertions, 28 deletions
diff --git a/drivers/powercap/dtpm_cpu.c b/drivers/powercap/dtpm_cpu.c
index f5eced0842b3..6a88eb7e9f75 100644
--- a/drivers/powercap/dtpm_cpu.c
+++ b/drivers/powercap/dtpm_cpu.c
@@ -71,34 +71,19 @@ static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
{
- unsigned long max = 0, sum_util = 0;
+ unsigned long max, sum_util = 0;
int cpu;
- for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
-
- /*
- * The capacity is the same for all CPUs belonging to
- * the same perf domain, so a single call to
- * arch_scale_cpu_capacity() is enough. However, we
- * need the CPU parameter to be initialized by the
- * loop, so the call ends up in this block.
- *
- * We can initialize 'max' with a cpumask_first() call
- * before the loop but the bits computation is not
- * worth given the arch_scale_cpu_capacity() just
- * returns a value where the resulting assembly code
- * will be optimized by the compiler.
- */
- max = arch_scale_cpu_capacity(cpu);
- sum_util += sched_cpu_util(cpu, max);
- }
-
/*
- * In the improbable case where all the CPUs of the perf
- * domain are offline, 'max' will be zero and will lead to an
- * illegal operation with a zero division.
+ * The capacity is the same for all CPUs belonging to
+ * the same perf domain.
*/
- return max ? (power * ((sum_util << 10) / max)) >> 10 : 0;
+ max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
+
+ for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
+ sum_util += sched_cpu_util(cpu);
+
+ return (power * ((sum_util << 10) / max)) >> 10;
}
static u64 get_pd_power_uw(struct dtpm *dtpm)
diff --git a/drivers/thermal/cpufreq_cooling.c b/drivers/thermal/cpufreq_cooling.c
index b8151d95a806..b263b0fde03c 100644
--- a/drivers/thermal/cpufreq_cooling.c
+++ b/drivers/thermal/cpufreq_cooling.c
@@ -137,11 +137,9 @@ static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
int cpu_idx)
{
- unsigned long max = arch_scale_cpu_capacity(cpu);
- unsigned long util;
+ unsigned long util = sched_cpu_util(cpu);
- util = sched_cpu_util(cpu, max);
- return (util * 100) / max;
+ return (util * 100) / arch_scale_cpu_capacity(cpu);
}
#else /* !CONFIG_SMP */
static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,