summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-10-12 13:06:20 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-10-12 13:06:20 -0700
commited016af52ee3035b4799ebd7d53f9ae59d5782c4 (patch)
tree626b659a6e2e44f3c6a65e1053eec6e108e61332 /Documentation
parentedaa5ddf3833669a25654d42c0fb653dfdd906df (diff)
parent2116d708b0580c0048fc80b82ec4b53f4ddaa166 (diff)
downloadlinux-ed016af52ee3035b4799ebd7d53f9ae59d5782c4.tar.bz2
Merge tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar: "These are the locking updates for v5.10: - Add deadlock detection for recursive read-locks. The rationale is outlined in commit 224ec489d3cd ("lockdep/ Documention: Recursive read lock detection reasoning") The main deadlock pattern we want to detect is: TASK A: TASK B: read_lock(X); write_lock(X); read_lock_2(X); - Add "latch sequence counters" (seqcount_latch_t): A sequence counter variant where the counter even/odd value is used to switch between two copies of protected data. This allows the read path, typically NMIs, to safely interrupt the write side critical section. We utilize this new variant for sched-clock, and to make x86 TSC handling safer. - Other seqlock cleanups, fixes and enhancements - KCSAN updates - LKMM updates - Misc updates, cleanups and fixes" * tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits) lockdep: Revert "lockdep: Use raw_cpu_*() for per-cpu variables" lockdep: Fix lockdep recursion lockdep: Fix usage_traceoverflow locking/atomics: Check atomic-arch-fallback.h too locking/seqlock: Tweak DEFINE_SEQLOCK() kernel doc lockdep: Optimize the memory usage of circular queue seqlock: Unbreak lockdep seqlock: PREEMPT_RT: Do not starve seqlock_t writers seqlock: seqcount_LOCKNAME_t: Introduce PREEMPT_RT support seqlock: seqcount_t: Implement all read APIs as statement expressions seqlock: Use unique prefix for seqcount_t property accessors seqlock: seqcount_LOCKNAME_t: Standardize naming convention seqlock: seqcount latch APIs: Only allow seqcount_latch_t rbtree_latch: Use seqcount_latch_t x86/tsc: Use seqcount_latch_t timekeeping: Use seqcount_latch_t time/sched_clock: Use seqcount_latch_t seqlock: Introduce seqcount_latch_t mm/swap: Do not abuse the seqcount_t latching API time/sched_clock: Use raw_read_seqcount_latch() during suspend ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/locking/lockdep-design.rst258
-rw-r--r--Documentation/locking/seqlock.rst18
2 files changed, 276 insertions, 0 deletions
diff --git a/Documentation/locking/lockdep-design.rst b/Documentation/locking/lockdep-design.rst
index 23fcbc4d3fc0..cec03bd1294a 100644
--- a/Documentation/locking/lockdep-design.rst
+++ b/Documentation/locking/lockdep-design.rst
@@ -392,3 +392,261 @@ Run the command and save the output, then compare against the output from
a later run of this command to identify the leakers. This same output
can also help you find situations where runtime lock initialization has
been omitted.
+
+Recursive read locks:
+---------------------
+The whole of the rest document tries to prove a certain type of cycle is equivalent
+to deadlock possibility.
+
+There are three types of lockers: writers (i.e. exclusive lockers, like
+spin_lock() or write_lock()), non-recursive readers (i.e. shared lockers, like
+down_read()) and recursive readers (recursive shared lockers, like rcu_read_lock()).
+And we use the following notations of those lockers in the rest of the document:
+
+ W or E: stands for writers (exclusive lockers).
+ r: stands for non-recursive readers.
+ R: stands for recursive readers.
+ S: stands for all readers (non-recursive + recursive), as both are shared lockers.
+ N: stands for writers and non-recursive readers, as both are not recursive.
+
+Obviously, N is "r or W" and S is "r or R".
+
+Recursive readers, as their name indicates, are the lockers allowed to acquire
+even inside the critical section of another reader of the same lock instance,
+in other words, allowing nested read-side critical sections of one lock instance.
+
+While non-recursive readers will cause a self deadlock if trying to acquire inside
+the critical section of another reader of the same lock instance.
+
+The difference between recursive readers and non-recursive readers is because:
+recursive readers get blocked only by a write lock *holder*, while non-recursive
+readers could get blocked by a write lock *waiter*. Considering the follow example:
+
+ TASK A: TASK B:
+
+ read_lock(X);
+ write_lock(X);
+ read_lock_2(X);
+
+Task A gets the reader (no matter whether recursive or non-recursive) on X via
+read_lock() first. And when task B tries to acquire writer on X, it will block
+and become a waiter for writer on X. Now if read_lock_2() is recursive readers,
+task A will make progress, because writer waiters don't block recursive readers,
+and there is no deadlock. However, if read_lock_2() is non-recursive readers,
+it will get blocked by writer waiter B, and cause a self deadlock.
+
+Block conditions on readers/writers of the same lock instance:
+--------------------------------------------------------------
+There are simply four block conditions:
+
+1. Writers block other writers.
+2. Readers block writers.
+3. Writers block both recursive readers and non-recursive readers.
+4. And readers (recursive or not) don't block other recursive readers but
+ may block non-recursive readers (because of the potential co-existing
+ writer waiters)
+
+Block condition matrix, Y means the row blocks the column, and N means otherwise.
+
+ | E | r | R |
+ +---+---+---+---+
+ E | Y | Y | Y |
+ +---+---+---+---+
+ r | Y | Y | N |
+ +---+---+---+---+
+ R | Y | Y | N |
+
+ (W: writers, r: non-recursive readers, R: recursive readers)
+
+
+acquired recursively. Unlike non-recursive read locks, recursive read locks
+only get blocked by current write lock *holders* other than write lock
+*waiters*, for example:
+
+ TASK A: TASK B:
+
+ read_lock(X);
+
+ write_lock(X);
+
+ read_lock(X);
+
+is not a deadlock for recursive read locks, as while the task B is waiting for
+the lock X, the second read_lock() doesn't need to wait because it's a recursive
+read lock. However if the read_lock() is non-recursive read lock, then the above
+case is a deadlock, because even if the write_lock() in TASK B cannot get the
+lock, but it can block the second read_lock() in TASK A.
+
+Note that a lock can be a write lock (exclusive lock), a non-recursive read
+lock (non-recursive shared lock) or a recursive read lock (recursive shared
+lock), depending on the lock operations used to acquire it (more specifically,
+the value of the 'read' parameter for lock_acquire()). In other words, a single
+lock instance has three types of acquisition depending on the acquisition
+functions: exclusive, non-recursive read, and recursive read.
+
+To be concise, we call that write locks and non-recursive read locks as
+"non-recursive" locks and recursive read locks as "recursive" locks.
+
+Recursive locks don't block each other, while non-recursive locks do (this is
+even true for two non-recursive read locks). A non-recursive lock can block the
+corresponding recursive lock, and vice versa.
+
+A deadlock case with recursive locks involved is as follow:
+
+ TASK A: TASK B:
+
+ read_lock(X);
+ read_lock(Y);
+ write_lock(Y);
+ write_lock(X);
+
+Task A is waiting for task B to read_unlock() Y and task B is waiting for task
+A to read_unlock() X.
+
+Dependency types and strong dependency paths:
+---------------------------------------------
+Lock dependencies record the orders of the acquisitions of a pair of locks, and
+because there are 3 types for lockers, there are, in theory, 9 types of lock
+dependencies, but we can show that 4 types of lock dependencies are enough for
+deadlock detection.
+
+For each lock dependency:
+
+ L1 -> L2
+
+, which means lockdep has seen L1 held before L2 held in the same context at runtime.
+And in deadlock detection, we care whether we could get blocked on L2 with L1 held,
+IOW, whether there is a locker L3 that L1 blocks L3 and L2 gets blocked by L3. So
+we only care about 1) what L1 blocks and 2) what blocks L2. As a result, we can combine
+recursive readers and non-recursive readers for L1 (as they block the same types) and
+we can combine writers and non-recursive readers for L2 (as they get blocked by the
+same types).
+
+With the above combination for simplification, there are 4 types of dependency edges
+in the lockdep graph:
+
+1) -(ER)->: exclusive writer to recursive reader dependency, "X -(ER)-> Y" means
+ X -> Y and X is a writer and Y is a recursive reader.
+
+2) -(EN)->: exclusive writer to non-recursive locker dependency, "X -(EN)-> Y" means
+ X -> Y and X is a writer and Y is either a writer or non-recursive reader.
+
+3) -(SR)->: shared reader to recursive reader dependency, "X -(SR)-> Y" means
+ X -> Y and X is a reader (recursive or not) and Y is a recursive reader.
+
+4) -(SN)->: shared reader to non-recursive locker dependency, "X -(SN)-> Y" means
+ X -> Y and X is a reader (recursive or not) and Y is either a writer or
+ non-recursive reader.
+
+Note that given two locks, they may have multiple dependencies between them, for example:
+
+ TASK A:
+
+ read_lock(X);
+ write_lock(Y);
+ ...
+
+ TASK B:
+
+ write_lock(X);
+ write_lock(Y);
+
+, we have both X -(SN)-> Y and X -(EN)-> Y in the dependency graph.
+
+We use -(xN)-> to represent edges that are either -(EN)-> or -(SN)->, the
+similar for -(Ex)->, -(xR)-> and -(Sx)->
+
+A "path" is a series of conjunct dependency edges in the graph. And we define a
+"strong" path, which indicates the strong dependency throughout each dependency
+in the path, as the path that doesn't have two conjunct edges (dependencies) as
+-(xR)-> and -(Sx)->. In other words, a "strong" path is a path from a lock
+walking to another through the lock dependencies, and if X -> Y -> Z is in the
+path (where X, Y, Z are locks), and the walk from X to Y is through a -(SR)-> or
+-(ER)-> dependency, the walk from Y to Z must not be through a -(SN)-> or
+-(SR)-> dependency.
+
+We will see why the path is called "strong" in next section.
+
+Recursive Read Deadlock Detection:
+----------------------------------
+
+We now prove two things:
+
+Lemma 1:
+
+If there is a closed strong path (i.e. a strong circle), then there is a
+combination of locking sequences that causes deadlock. I.e. a strong circle is
+sufficient for deadlock detection.
+
+Lemma 2:
+
+If there is no closed strong path (i.e. strong circle), then there is no
+combination of locking sequences that could cause deadlock. I.e. strong
+circles are necessary for deadlock detection.
+
+With these two Lemmas, we can easily say a closed strong path is both sufficient
+and necessary for deadlocks, therefore a closed strong path is equivalent to
+deadlock possibility. As a closed strong path stands for a dependency chain that
+could cause deadlocks, so we call it "strong", considering there are dependency
+circles that won't cause deadlocks.
+
+Proof for sufficiency (Lemma 1):
+
+Let's say we have a strong circle:
+
+ L1 -> L2 ... -> Ln -> L1
+
+, which means we have dependencies:
+
+ L1 -> L2
+ L2 -> L3
+ ...
+ Ln-1 -> Ln
+ Ln -> L1
+
+We now can construct a combination of locking sequences that cause deadlock:
+
+Firstly let's make one CPU/task get the L1 in L1 -> L2, and then another get
+the L2 in L2 -> L3, and so on. After this, all of the Lx in Lx -> Lx+1 are
+held by different CPU/tasks.
+
+And then because we have L1 -> L2, so the holder of L1 is going to acquire L2
+in L1 -> L2, however since L2 is already held by another CPU/task, plus L1 ->
+L2 and L2 -> L3 are not -(xR)-> and -(Sx)-> (the definition of strong), which
+means either L2 in L1 -> L2 is a non-recursive locker (blocked by anyone) or
+the L2 in L2 -> L3, is writer (blocking anyone), therefore the holder of L1
+cannot get L2, it has to wait L2's holder to release.
+
+Moreover, we can have a similar conclusion for L2's holder: it has to wait L3's
+holder to release, and so on. We now can prove that Lx's holder has to wait for
+Lx+1's holder to release, and note that Ln+1 is L1, so we have a circular
+waiting scenario and nobody can get progress, therefore a deadlock.
+
+Proof for necessary (Lemma 2):
+
+Lemma 2 is equivalent to: If there is a deadlock scenario, then there must be a
+strong circle in the dependency graph.
+
+According to Wikipedia[1], if there is a deadlock, then there must be a circular
+waiting scenario, means there are N CPU/tasks, where CPU/task P1 is waiting for
+a lock held by P2, and P2 is waiting for a lock held by P3, ... and Pn is waiting
+for a lock held by P1. Let's name the lock Px is waiting as Lx, so since P1 is waiting
+for L1 and holding Ln, so we will have Ln -> L1 in the dependency graph. Similarly,
+we have L1 -> L2, L2 -> L3, ..., Ln-1 -> Ln in the dependency graph, which means we
+have a circle:
+
+ Ln -> L1 -> L2 -> ... -> Ln
+
+, and now let's prove the circle is strong:
+
+For a lock Lx, Px contributes the dependency Lx-1 -> Lx and Px+1 contributes
+the dependency Lx -> Lx+1, and since Px is waiting for Px+1 to release Lx,
+so it's impossible that Lx on Px+1 is a reader and Lx on Px is a recursive
+reader, because readers (no matter recursive or not) don't block recursive
+readers, therefore Lx-1 -> Lx and Lx -> Lx+1 cannot be a -(xR)-> -(Sx)-> pair,
+and this is true for any lock in the circle, therefore, the circle is strong.
+
+References:
+-----------
+[1]: https://en.wikipedia.org/wiki/Deadlock
+[2]: Shibu, K. (2009). Intro To Embedded Systems (1st ed.). Tata McGraw-Hill
diff --git a/Documentation/locking/seqlock.rst b/Documentation/locking/seqlock.rst
index 62c5ad98c11c..a334b584f2b3 100644
--- a/Documentation/locking/seqlock.rst
+++ b/Documentation/locking/seqlock.rst
@@ -139,6 +139,24 @@ with the associated LOCKTYPE lock acquired.
Read path: same as in :ref:`seqcount_t`.
+
+.. _seqcount_latch_t:
+
+Latch sequence counters (``seqcount_latch_t``)
+----------------------------------------------
+
+Latch sequence counters are a multiversion concurrency control mechanism
+where the embedded seqcount_t counter even/odd value is used to switch
+between two copies of protected data. This allows the sequence counter
+read path to safely interrupt its own write side critical section.
+
+Use seqcount_latch_t when the write side sections cannot be protected
+from interruption by readers. This is typically the case when the read
+side can be invoked from NMI handlers.
+
+Check `raw_write_seqcount_latch()` for more information.
+
+
.. _seqlock_t:
Sequential locks (``seqlock_t``)