summaryrefslogtreecommitdiffstats
path: root/Documentation/virt/kvm/s390/s390-pv-dump.rst
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2022-07-29 09:46:01 -0400
committerPaolo Bonzini <pbonzini@redhat.com>2022-08-01 03:21:00 -0400
commit63f4b210414b65aa3103c54369cacbd0b1bdf02f (patch)
tree2dc7b490d3a89306669c70256a41764ca52ab3b3 /Documentation/virt/kvm/s390/s390-pv-dump.rst
parent2e2e91158febfeb73b5d4f249440218304f34101 (diff)
parent7edc3a68038ab151a8791ddb6217755a5e4a5809 (diff)
downloadlinux-63f4b210414b65aa3103c54369cacbd0b1bdf02f.tar.bz2
Merge remote-tracking branch 'kvm/next' into kvm-next-5.20
KVM/s390, KVM/x86 and common infrastructure changes for 5.20 x86: * Permit guests to ignore single-bit ECC errors * Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache * Intel IPI virtualization * Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS * PEBS virtualization * Simplify PMU emulation by just using PERF_TYPE_RAW events * More accurate event reinjection on SVM (avoid retrying instructions) * Allow getting/setting the state of the speaker port data bit * Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent * "Notify" VM exit (detect microarchitectural hangs) for Intel * Cleanups for MCE MSR emulation s390: * add an interface to provide a hypervisor dump for secure guests * improve selftests to use TAP interface * enable interpretive execution of zPCI instructions (for PCI passthrough) * First part of deferred teardown * CPU Topology * PV attestation * Minor fixes Generic: * new selftests API using struct kvm_vcpu instead of a (vm, id) tuple x86: * Use try_cmpxchg64 instead of cmpxchg64 * Bugfixes * Ignore benign host accesses to PMU MSRs when PMU is disabled * Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior * x86/MMU: Allow NX huge pages to be disabled on a per-vm basis * Port eager page splitting to shadow MMU as well * Enable CMCI capability by default and handle injected UCNA errors * Expose pid of vcpu threads in debugfs * x2AVIC support for AMD * cleanup PIO emulation * Fixes for LLDT/LTR emulation * Don't require refcounted "struct page" to create huge SPTEs x86 cleanups: * Use separate namespaces for guest PTEs and shadow PTEs bitmasks * PIO emulation * Reorganize rmap API, mostly around rmap destruction * Do not workaround very old KVM bugs for L0 that runs with nesting enabled * new selftests API for CPUID
Diffstat (limited to 'Documentation/virt/kvm/s390/s390-pv-dump.rst')
-rw-r--r--Documentation/virt/kvm/s390/s390-pv-dump.rst64
1 files changed, 64 insertions, 0 deletions
diff --git a/Documentation/virt/kvm/s390/s390-pv-dump.rst b/Documentation/virt/kvm/s390/s390-pv-dump.rst
new file mode 100644
index 000000000000..e542f06048f3
--- /dev/null
+++ b/Documentation/virt/kvm/s390/s390-pv-dump.rst
@@ -0,0 +1,64 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========================================
+s390 (IBM Z) Protected Virtualization dumps
+===========================================
+
+Summary
+-------
+
+Dumping a VM is an essential tool for debugging problems inside
+it. This is especially true when a protected VM runs into trouble as
+there's no way to access its memory and registers from the outside
+while it's running.
+
+However when dumping a protected VM we need to maintain its
+confidentiality until the dump is in the hands of the VM owner who
+should be the only one capable of analysing it.
+
+The confidentiality of the VM dump is ensured by the Ultravisor who
+provides an interface to KVM over which encrypted CPU and memory data
+can be requested. The encryption is based on the Customer
+Communication Key which is the key that's used to encrypt VM data in a
+way that the customer is able to decrypt.
+
+
+Dump process
+------------
+
+A dump is done in 3 steps:
+
+**Initiation**
+
+This step initializes the dump process, generates cryptographic seeds
+and extracts dump keys with which the VM dump data will be encrypted.
+
+**Data gathering**
+
+Currently there are two types of data that can be gathered from a VM:
+the memory and the vcpu state.
+
+The vcpu state contains all the important registers, general, floating
+point, vector, control and tod/timers of a vcpu. The vcpu dump can
+contain incomplete data if a vcpu is dumped while an instruction is
+emulated with help of the hypervisor. This is indicated by a flag bit
+in the dump data. For the same reason it is very important to not only
+write out the encrypted vcpu state, but also the unencrypted state
+from the hypervisor.
+
+The memory state is further divided into the encrypted memory and its
+metadata comprised of the encryption tweaks and status flags. The
+encrypted memory can simply be read once it has been exported. The
+time of the export does not matter as no re-encryption is
+needed. Memory that has been swapped out and hence was exported can be
+read from the swap and written to the dump target without need for any
+special actions.
+
+The tweaks / status flags for the exported pages need to be requested
+from the Ultravisor.
+
+**Finalization**
+
+The finalization step will provide the data needed to be able to
+decrypt the vcpu and memory data and end the dump process. When this
+step completes successfully a new dump initiation can be started.