summaryrefslogtreecommitdiffstats
path: root/ctrl/kinematics.vala
diff options
context:
space:
mode:
Diffstat (limited to 'ctrl/kinematics.vala')
-rw-r--r--ctrl/kinematics.vala148
1 files changed, 148 insertions, 0 deletions
diff --git a/ctrl/kinematics.vala b/ctrl/kinematics.vala
new file mode 100644
index 0000000..0e90a8f
--- /dev/null
+++ b/ctrl/kinematics.vala
@@ -0,0 +1,148 @@
+/* Copyright 2012, Sebastian Reichel <sre@ring0.de>
+ * Copyright 2012, Ted Carancho
+ *
+ * Ported from AeroQuad
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+public class Kinematics {
+ /* quaternion elements representing the estimated orientation */
+ double q0;
+ double q1;
+ double q2;
+ double q3;
+
+ /* scaled integral error */
+ double exInt = 0.0;
+ double eyInt = 0.0;
+ double ezInt = 0.0;
+
+ /* proportional gain governs rate of convergence to accelerometer */
+ double kpAcc = 0.2;
+
+ /* integral gain governs rate of convergence of gyroscope biases */
+ double kiAcc = 0.0005;
+
+ /* proportional gain governs rate of convergence to magnetometer */
+ double kpMag = 2.0;
+ /* integral gain governs rate of convergence of gyroscope biases */
+ double kiMag = 0.005;
+
+ /* half the sample period*/
+ double halfT = 0.0;
+
+ public double[] kinematicsAngle = new double[3];
+ public double[] correctedRateVector = new double[3];
+ public double[] gyroAngle = new double[2];
+
+ public Kinematics(double hdgX, double hdgY) {
+ for (var axis = AXIS.X; axis <= AXIS.Z; axis+=1)
+ kinematicsAngle[axis] = 0;
+ for (var axis = AXIS.X; axis <= AXIS.Y; axis+=1)
+ gyroAngle[axis] = 0;
+
+ double hdg = Math.atan2(hdgY, hdgX);
+ q0 = Math.cos(hdg/2);
+ q1 = 0;
+ q2 = 0;
+ q3 = Math.sin(hdg/2);
+ }
+
+ public void update(double gx, double gy, double gz, double ax, double ay, double az, double mx, double my, double mz, double time) {
+ double norm;
+ double hx, hy, hz, bx, bz;
+ double vx, vy, vz, wx, wy, wz;
+ double exAcc, eyAcc, ezAcc;
+ double exMag, eyMag, ezMag;
+ double q0i, q1i, q2i, q3i;
+
+ halfT = time/2;
+
+ /* normalise the accelerometer measurements */
+ norm = Math.sqrt(ax*ax + ay*ay + az*az);
+ ax = ax / norm;
+ ay = ay / norm;
+ az = az / norm;
+
+ /* normalise the magnometer measurements */
+ norm = Math.sqrt(mx*mx + my*my + mz*mz);
+ mx = mx / norm;
+ my = my / norm;
+ mz = mz / norm;
+
+ /* compute reference direction of flux */
+ hx = mx * 2 * (0.5 - q2 * q2 - q3 * q3) + my * 2 * (q1 * q2 - q0 * q3) + mz * 2 * (q1 * q3 + q0 * q2);
+ hy = mx * 2 * (q1 * q2 + q0 * q3) + my * 2 * (0.5 - q1 * q1 - q3 * q3) + mz * 2 * (q2 * q3 - q0 * q1);
+ hz = mx * 2 * (q1 * q3 - q0 * q2) + my * 2 * (q2 * q3 + q0 * q1) + mz * 2 * (0.5 - q1 * q1 - q2 * q2);
+
+ bx = Math.sqrt((hx*hx) + (hy*hy));
+ bz = hz;
+
+ /* estimate direction of gravity and flux (v and w) */
+ vx = 2 *(q1 * q3 - q0 * q2);
+ vy = 2 *(q0 * q1 + q2 * q3);
+ vz = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3;
+
+ wx = bx * 2*(0.5 - q2 * q2 - q3 * q3) + bz * 2 * (q1 * q3 - q0 * q2);
+ wy = bx * 2*(q1 * q2 - q0 * q3) + bz * 2 * (q0 * q1 + q2 * q3);
+ wz = bx * 2*(q0 * q2 + q1 * q3) + bz * 2 * (0.5 - q1 * q1 - q2 * q2);
+
+ /* error is sum of cross product between reference direction of fields and direction measured by sensors */
+ exAcc = (vy*az - vz*ay);
+ eyAcc = (vz*ax - vx*az);
+ ezAcc = (vx*ay - vy*ax);
+
+ exMag = (my*wz - mz*wy);
+ eyMag = (mz*wx - mx*wz);
+ ezMag = (mx*wy - my*wx);
+
+ /* integral error scaled integral gain */
+ exInt = exInt + exAcc*kiAcc + exMag*kiMag;
+ eyInt = eyInt + eyAcc*kiAcc + eyMag*kiMag;
+ ezInt = ezInt + ezAcc*kiAcc + ezMag*kiMag;
+
+ /* adjusted gyroscope measurements */
+ correctedRateVector[AXIS.X] = gx = gx + exAcc*kpAcc + exMag*kpMag + exInt;
+ correctedRateVector[AXIS.Y] = gy = gy + eyAcc*kpAcc + eyMag*kpMag + eyInt;
+ correctedRateVector[AXIS.Z] = gz = gz + ezAcc*kpAcc + ezMag*kpMag + ezInt;
+
+ /* integrate quaternion rate and normalise */
+ q0i = (-q1*gx - q2*gy - q3*gz) * halfT;
+ q1i = ( q0*gx + q2*gz - q3*gy) * halfT;
+ q2i = ( q0*gy - q1*gz + q3*gx) * halfT;
+ q3i = ( q0*gz + q1*gy - q2*gx) * halfT;
+ q0 += q0i;
+ q1 += q1i;
+ q2 += q2i;
+ q3 += q3i;
+
+ /* normalise quaternion */
+ norm = Math.sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);
+ q0 = q0 / norm;
+ q1 = q1 / norm;
+ q2 = q2 / norm;
+ q3 = q3 / norm;
+
+ /* save the adjusted gyroscope measurements */
+ correctedRateVector[AXIS.X] = gx;
+ correctedRateVector[AXIS.Y] = gy;
+ correctedRateVector[AXIS.Z] = gz;
+
+ /* calculate euler angles */
+ kinematicsAngle[AXIS.X] = Math.atan2(2 * (q0*q1 + q2*q3), 1 - 2 *(q1*q1 + q2*q2));
+ kinematicsAngle[AXIS.Y] = Math.asin(2 * (q0*q2 - q1*q3));
+ kinematicsAngle[AXIS.Z] = Math.atan2(2 * (q0*q3 + q1*q2), 1 - 2 *(q2*q2 + q3*q3));
+ }
+}