summaryrefslogtreecommitdiffstats
path: root/tools/lib/bpf/btf.c
blob: 89fecfe5cb2b307d8bb2d10e1f81406a87f4096b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/* Copyright (c) 2018 Facebook */

#include <byteswap.h>
#include <endian.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/utsname.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/btf.h>
#include <gelf.h>
#include "btf.h"
#include "bpf.h"
#include "libbpf.h"
#include "libbpf_internal.h"
#include "hashmap.h"

#define BTF_MAX_NR_TYPES 0x7fffffffU
#define BTF_MAX_STR_OFFSET 0x7fffffffU

static struct btf_type btf_void;

struct btf {
	/* raw BTF data in native endianness */
	void *raw_data;
	/* raw BTF data in non-native endianness */
	void *raw_data_swapped;
	__u32 raw_size;
	/* whether target endianness differs from the native one */
	bool swapped_endian;

	/*
	 * When BTF is loaded from an ELF or raw memory it is stored
	 * in a contiguous memory block. The hdr, type_data, and, strs_data
	 * point inside that memory region to their respective parts of BTF
	 * representation:
	 *
	 * +--------------------------------+
	 * |  Header  |  Types  |  Strings  |
	 * +--------------------------------+
	 * ^          ^         ^
	 * |          |         |
	 * hdr        |         |
	 * types_data-+         |
	 * strs_data------------+
	 *
	 * If BTF data is later modified, e.g., due to types added or
	 * removed, BTF deduplication performed, etc, this contiguous
	 * representation is broken up into three independently allocated
	 * memory regions to be able to modify them independently.
	 * raw_data is nulled out at that point, but can be later allocated
	 * and cached again if user calls btf__get_raw_data(), at which point
	 * raw_data will contain a contiguous copy of header, types, and
	 * strings:
	 *
	 * +----------+  +---------+  +-----------+
	 * |  Header  |  |  Types  |  |  Strings  |
	 * +----------+  +---------+  +-----------+
	 * ^             ^            ^
	 * |             |            |
	 * hdr           |            |
	 * types_data----+            |
	 * strs_data------------------+
	 *
	 *               +----------+---------+-----------+
	 *               |  Header  |  Types  |  Strings  |
	 * raw_data----->+----------+---------+-----------+
	 */
	struct btf_header *hdr;

	void *types_data;
	size_t types_data_cap; /* used size stored in hdr->type_len */

	/* type ID to `struct btf_type *` lookup index */
	__u32 *type_offs;
	size_t type_offs_cap;
	__u32 nr_types;

	void *strs_data;
	size_t strs_data_cap; /* used size stored in hdr->str_len */

	/* lookup index for each unique string in strings section */
	struct hashmap *strs_hash;
	/* whether strings are already deduplicated */
	bool strs_deduped;
	/* BTF object FD, if loaded into kernel */
	int fd;

	/* Pointer size (in bytes) for a target architecture of this BTF */
	int ptr_sz;
};

static inline __u64 ptr_to_u64(const void *ptr)
{
	return (__u64) (unsigned long) ptr;
}

/* Ensure given dynamically allocated memory region pointed to by *data* with
 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
 * are already used. At most *max_cnt* elements can be ever allocated.
 * If necessary, memory is reallocated and all existing data is copied over,
 * new pointer to the memory region is stored at *data, new memory region
 * capacity (in number of elements) is stored in *cap.
 * On success, memory pointer to the beginning of unused memory is returned.
 * On error, NULL is returned.
 */
void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
{
	size_t new_cnt;
	void *new_data;

	if (cur_cnt + add_cnt <= *cap_cnt)
		return *data + cur_cnt * elem_sz;

	/* requested more than the set limit */
	if (cur_cnt + add_cnt > max_cnt)
		return NULL;

	new_cnt = *cap_cnt;
	new_cnt += new_cnt / 4;		  /* expand by 25% */
	if (new_cnt < 16)		  /* but at least 16 elements */
		new_cnt = 16;
	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
		new_cnt = max_cnt;
	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
		new_cnt = cur_cnt + add_cnt;

	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
	if (!new_data)
		return NULL;

	/* zero out newly allocated portion of memory */
	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);

	*data = new_data;
	*cap_cnt = new_cnt;
	return new_data + cur_cnt * elem_sz;
}

/* Ensure given dynamically allocated memory region has enough allocated space
 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 */
int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
{
	void *p;

	if (need_cnt <= *cap_cnt)
		return 0;

	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
	if (!p)
		return -ENOMEM;

	return 0;
}

static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
{
	__u32 *p;

	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
			btf->nr_types + 1, BTF_MAX_NR_TYPES, 1);
	if (!p)
		return -ENOMEM;

	*p = type_off;
	return 0;
}

static void btf_bswap_hdr(struct btf_header *h)
{
	h->magic = bswap_16(h->magic);
	h->hdr_len = bswap_32(h->hdr_len);
	h->type_off = bswap_32(h->type_off);
	h->type_len = bswap_32(h->type_len);
	h->str_off = bswap_32(h->str_off);
	h->str_len = bswap_32(h->str_len);
}

static int btf_parse_hdr(struct btf *btf)
{
	struct btf_header *hdr = btf->hdr;
	__u32 meta_left;

	if (btf->raw_size < sizeof(struct btf_header)) {
		pr_debug("BTF header not found\n");
		return -EINVAL;
	}

	if (hdr->magic == bswap_16(BTF_MAGIC)) {
		btf->swapped_endian = true;
		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
				bswap_32(hdr->hdr_len));
			return -ENOTSUP;
		}
		btf_bswap_hdr(hdr);
	} else if (hdr->magic != BTF_MAGIC) {
		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
		return -EINVAL;
	}

	meta_left = btf->raw_size - sizeof(*hdr);
	if (!meta_left) {
		pr_debug("BTF has no data\n");
		return -EINVAL;
	}

	if (meta_left < hdr->type_off) {
		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
		return -EINVAL;
	}

	if (meta_left < hdr->str_off) {
		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
		return -EINVAL;
	}

	if (hdr->type_off >= hdr->str_off) {
		pr_debug("BTF type section offset >= string section offset. No type?\n");
		return -EINVAL;
	}

	if (hdr->type_off & 0x02) {
		pr_debug("BTF type section is not aligned to 4 bytes\n");
		return -EINVAL;
	}

	return 0;
}

static int btf_parse_str_sec(struct btf *btf)
{
	const struct btf_header *hdr = btf->hdr;
	const char *start = btf->strs_data;
	const char *end = start + btf->hdr->str_len;

	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
	    start[0] || end[-1]) {
		pr_debug("Invalid BTF string section\n");
		return -EINVAL;
	}

	return 0;
}

static int btf_type_size(const struct btf_type *t)
{
	const int base_size = sizeof(struct btf_type);
	__u16 vlen = btf_vlen(t);

	switch (btf_kind(t)) {
	case BTF_KIND_FWD:
	case BTF_KIND_CONST:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_RESTRICT:
	case BTF_KIND_PTR:
	case BTF_KIND_TYPEDEF:
	case BTF_KIND_FUNC:
		return base_size;
	case BTF_KIND_INT:
		return base_size + sizeof(__u32);
	case BTF_KIND_ENUM:
		return base_size + vlen * sizeof(struct btf_enum);
	case BTF_KIND_ARRAY:
		return base_size + sizeof(struct btf_array);
	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION:
		return base_size + vlen * sizeof(struct btf_member);
	case BTF_KIND_FUNC_PROTO:
		return base_size + vlen * sizeof(struct btf_param);
	case BTF_KIND_VAR:
		return base_size + sizeof(struct btf_var);
	case BTF_KIND_DATASEC:
		return base_size + vlen * sizeof(struct btf_var_secinfo);
	default:
		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
		return -EINVAL;
	}
}

static void btf_bswap_type_base(struct btf_type *t)
{
	t->name_off = bswap_32(t->name_off);
	t->info = bswap_32(t->info);
	t->type = bswap_32(t->type);
}

static int btf_bswap_type_rest(struct btf_type *t)
{
	struct btf_var_secinfo *v;
	struct btf_member *m;
	struct btf_array *a;
	struct btf_param *p;
	struct btf_enum *e;
	__u16 vlen = btf_vlen(t);
	int i;

	switch (btf_kind(t)) {
	case BTF_KIND_FWD:
	case BTF_KIND_CONST:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_RESTRICT:
	case BTF_KIND_PTR:
	case BTF_KIND_TYPEDEF:
	case BTF_KIND_FUNC:
		return 0;
	case BTF_KIND_INT:
		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
		return 0;
	case BTF_KIND_ENUM:
		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
			e->name_off = bswap_32(e->name_off);
			e->val = bswap_32(e->val);
		}
		return 0;
	case BTF_KIND_ARRAY:
		a = btf_array(t);
		a->type = bswap_32(a->type);
		a->index_type = bswap_32(a->index_type);
		a->nelems = bswap_32(a->nelems);
		return 0;
	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION:
		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
			m->name_off = bswap_32(m->name_off);
			m->type = bswap_32(m->type);
			m->offset = bswap_32(m->offset);
		}
		return 0;
	case BTF_KIND_FUNC_PROTO:
		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
			p->name_off = bswap_32(p->name_off);
			p->type = bswap_32(p->type);
		}
		return 0;
	case BTF_KIND_VAR:
		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
		return 0;
	case BTF_KIND_DATASEC:
		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
			v->type = bswap_32(v->type);
			v->offset = bswap_32(v->offset);
			v->size = bswap_32(v->size);
		}
		return 0;
	default:
		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
		return -EINVAL;
	}
}

static int btf_parse_type_sec(struct btf *btf)
{
	struct btf_header *hdr = btf->hdr;
	void *next_type = btf->types_data;
	void *end_type = next_type + hdr->type_len;
	int err, i = 0, type_size;

	/* VOID (type_id == 0) is specially handled by btf__get_type_by_id(),
	 * so ensure we can never properly use its offset from index by
	 * setting it to a large value
	 */
	err = btf_add_type_idx_entry(btf, UINT_MAX);
	if (err)
		return err;

	while (next_type + sizeof(struct btf_type) <= end_type) {
		i++;

		if (btf->swapped_endian)
			btf_bswap_type_base(next_type);

		type_size = btf_type_size(next_type);
		if (type_size < 0)
			return type_size;
		if (next_type + type_size > end_type) {
			pr_warn("BTF type [%d] is malformed\n", i);
			return -EINVAL;
		}

		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
			return -EINVAL;

		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
		if (err)
			return err;

		next_type += type_size;
		btf->nr_types++;
	}

	if (next_type != end_type) {
		pr_warn("BTF types data is malformed\n");
		return -EINVAL;
	}

	return 0;
}

__u32 btf__get_nr_types(const struct btf *btf)
{
	return btf->nr_types;
}

/* internal helper returning non-const pointer to a type */
static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
{
	if (type_id == 0)
		return &btf_void;

	return btf->types_data + btf->type_offs[type_id];
}

const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
{
	if (type_id > btf->nr_types)
		return NULL;
	return btf_type_by_id((struct btf *)btf, type_id);
}

static int determine_ptr_size(const struct btf *btf)
{
	const struct btf_type *t;
	const char *name;
	int i;

	for (i = 1; i <= btf->nr_types; i++) {
		t = btf__type_by_id(btf, i);
		if (!btf_is_int(t))
			continue;

		name = btf__name_by_offset(btf, t->name_off);
		if (!name)
			continue;

		if (strcmp(name, "long int") == 0 ||
		    strcmp(name, "long unsigned int") == 0) {
			if (t->size != 4 && t->size != 8)
				continue;
			return t->size;
		}
	}

	return -1;
}

static size_t btf_ptr_sz(const struct btf *btf)
{
	if (!btf->ptr_sz)
		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
}

/* Return pointer size this BTF instance assumes. The size is heuristically
 * determined by looking for 'long' or 'unsigned long' integer type and
 * recording its size in bytes. If BTF type information doesn't have any such
 * type, this function returns 0. In the latter case, native architecture's
 * pointer size is assumed, so will be either 4 or 8, depending on
 * architecture that libbpf was compiled for. It's possible to override
 * guessed value by using btf__set_pointer_size() API.
 */
size_t btf__pointer_size(const struct btf *btf)
{
	if (!btf->ptr_sz)
		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);

	if (btf->ptr_sz < 0)
		/* not enough BTF type info to guess */
		return 0;

	return btf->ptr_sz;
}

/* Override or set pointer size in bytes. Only values of 4 and 8 are
 * supported.
 */
int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
{
	if (ptr_sz != 4 && ptr_sz != 8)
		return -EINVAL;
	btf->ptr_sz = ptr_sz;
	return 0;
}

static bool is_host_big_endian(void)
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
	return false;
#elif __BYTE_ORDER == __BIG_ENDIAN
	return true;
#else
# error "Unrecognized __BYTE_ORDER__"
#endif
}

enum btf_endianness btf__endianness(const struct btf *btf)
{
	if (is_host_big_endian())
		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
	else
		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
}

int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
{
	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
		return -EINVAL;

	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
	if (!btf->swapped_endian) {
		free(btf->raw_data_swapped);
		btf->raw_data_swapped = NULL;
	}
	return 0;
}

static bool btf_type_is_void(const struct btf_type *t)
{
	return t == &btf_void || btf_is_fwd(t);
}

static bool btf_type_is_void_or_null(const struct btf_type *t)
{
	return !t || btf_type_is_void(t);
}

#define MAX_RESOLVE_DEPTH 32

__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
{
	const struct btf_array *array;
	const struct btf_type *t;
	__u32 nelems = 1;
	__s64 size = -1;
	int i;

	t = btf__type_by_id(btf, type_id);
	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
	     i++) {
		switch (btf_kind(t)) {
		case BTF_KIND_INT:
		case BTF_KIND_STRUCT:
		case BTF_KIND_UNION:
		case BTF_KIND_ENUM:
		case BTF_KIND_DATASEC:
			size = t->size;
			goto done;
		case BTF_KIND_PTR:
			size = btf_ptr_sz(btf);
			goto done;
		case BTF_KIND_TYPEDEF:
		case BTF_KIND_VOLATILE:
		case BTF_KIND_CONST:
		case BTF_KIND_RESTRICT:
		case BTF_KIND_VAR:
			type_id = t->type;
			break;
		case BTF_KIND_ARRAY:
			array = btf_array(t);
			if (nelems && array->nelems > UINT32_MAX / nelems)
				return -E2BIG;
			nelems *= array->nelems;
			type_id = array->type;
			break;
		default:
			return -EINVAL;
		}

		t = btf__type_by_id(btf, type_id);
	}

done:
	if (size < 0)
		return -EINVAL;
	if (nelems && size > UINT32_MAX / nelems)
		return -E2BIG;

	return nelems * size;
}

int btf__align_of(const struct btf *btf, __u32 id)
{
	const struct btf_type *t = btf__type_by_id(btf, id);
	__u16 kind = btf_kind(t);

	switch (kind) {
	case BTF_KIND_INT:
	case BTF_KIND_ENUM:
		return min(btf_ptr_sz(btf), (size_t)t->size);
	case BTF_KIND_PTR:
		return btf_ptr_sz(btf);
	case BTF_KIND_TYPEDEF:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_CONST:
	case BTF_KIND_RESTRICT:
		return btf__align_of(btf, t->type);
	case BTF_KIND_ARRAY:
		return btf__align_of(btf, btf_array(t)->type);
	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION: {
		const struct btf_member *m = btf_members(t);
		__u16 vlen = btf_vlen(t);
		int i, max_align = 1, align;

		for (i = 0; i < vlen; i++, m++) {
			align = btf__align_of(btf, m->type);
			if (align <= 0)
				return align;
			max_align = max(max_align, align);
		}

		return max_align;
	}
	default:
		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
		return 0;
	}
}

int btf__resolve_type(const struct btf *btf, __u32 type_id)
{
	const struct btf_type *t;
	int depth = 0;

	t = btf__type_by_id(btf, type_id);
	while (depth < MAX_RESOLVE_DEPTH &&
	       !btf_type_is_void_or_null(t) &&
	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
		type_id = t->type;
		t = btf__type_by_id(btf, type_id);
		depth++;
	}

	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
		return -EINVAL;

	return type_id;
}

__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
{
	__u32 i;

	if (!strcmp(type_name, "void"))
		return 0;

	for (i = 1; i <= btf->nr_types; i++) {
		const struct btf_type *t = btf__type_by_id(btf, i);
		const char *name = btf__name_by_offset(btf, t->name_off);

		if (name && !strcmp(type_name, name))
			return i;
	}

	return -ENOENT;
}

__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
			     __u32 kind)
{
	__u32 i;

	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
		return 0;

	for (i = 1; i <= btf->nr_types; i++) {
		const struct btf_type *t = btf__type_by_id(btf, i);
		const char *name;

		if (btf_kind(t) != kind)
			continue;
		name = btf__name_by_offset(btf, t->name_off);
		if (name && !strcmp(type_name, name))
			return i;
	}

	return -ENOENT;
}

static bool btf_is_modifiable(const struct btf *btf)
{
	return (void *)btf->hdr != btf->raw_data;
}

void btf__free(struct btf *btf)
{
	if (IS_ERR_OR_NULL(btf))
		return;

	if (btf->fd >= 0)
		close(btf->fd);

	if (btf_is_modifiable(btf)) {
		/* if BTF was modified after loading, it will have a split
		 * in-memory representation for header, types, and strings
		 * sections, so we need to free all of them individually. It
		 * might still have a cached contiguous raw data present,
		 * which will be unconditionally freed below.
		 */
		free(btf->hdr);
		free(btf->types_data);
		free(btf->strs_data);
	}
	free(btf->raw_data);
	free(btf->raw_data_swapped);
	free(btf->type_offs);
	free(btf);
}

struct btf *btf__new_empty(void)
{
	struct btf *btf;

	btf = calloc(1, sizeof(*btf));
	if (!btf)
		return ERR_PTR(-ENOMEM);

	btf->fd = -1;
	btf->ptr_sz = sizeof(void *);
	btf->swapped_endian = false;

	/* +1 for empty string at offset 0 */
	btf->raw_size = sizeof(struct btf_header) + 1;
	btf->raw_data = calloc(1, btf->raw_size);
	if (!btf->raw_data) {
		free(btf);
		return ERR_PTR(-ENOMEM);
	}

	btf->hdr = btf->raw_data;
	btf->hdr->hdr_len = sizeof(struct btf_header);
	btf->hdr->magic = BTF_MAGIC;
	btf->hdr->version = BTF_VERSION;

	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
	btf->hdr->str_len = 1; /* empty string at offset 0 */

	return btf;
}

struct btf *btf__new(const void *data, __u32 size)
{
	struct btf *btf;
	int err;

	btf = calloc(1, sizeof(struct btf));
	if (!btf)
		return ERR_PTR(-ENOMEM);

	btf->raw_data = malloc(size);
	if (!btf->raw_data) {
		err = -ENOMEM;
		goto done;
	}
	memcpy(btf->raw_data, data, size);
	btf->raw_size = size;

	btf->hdr = btf->raw_data;
	err = btf_parse_hdr(btf);
	if (err)
		goto done;

	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;

	err = btf_parse_str_sec(btf);
	err = err ?: btf_parse_type_sec(btf);
	if (err)
		goto done;

	btf->fd = -1;

done:
	if (err) {
		btf__free(btf);
		return ERR_PTR(err);
	}

	return btf;
}

struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
{
	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
	int err = 0, fd = -1, idx = 0;
	struct btf *btf = NULL;
	Elf_Scn *scn = NULL;
	Elf *elf = NULL;
	GElf_Ehdr ehdr;

	if (elf_version(EV_CURRENT) == EV_NONE) {
		pr_warn("failed to init libelf for %s\n", path);
		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
	}

	fd = open(path, O_RDONLY);
	if (fd < 0) {
		err = -errno;
		pr_warn("failed to open %s: %s\n", path, strerror(errno));
		return ERR_PTR(err);
	}

	err = -LIBBPF_ERRNO__FORMAT;

	elf = elf_begin(fd, ELF_C_READ, NULL);
	if (!elf) {
		pr_warn("failed to open %s as ELF file\n", path);
		goto done;
	}
	if (!gelf_getehdr(elf, &ehdr)) {
		pr_warn("failed to get EHDR from %s\n", path);
		goto done;
	}
	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
		pr_warn("failed to get e_shstrndx from %s\n", path);
		goto done;
	}

	while ((scn = elf_nextscn(elf, scn)) != NULL) {
		GElf_Shdr sh;
		char *name;

		idx++;
		if (gelf_getshdr(scn, &sh) != &sh) {
			pr_warn("failed to get section(%d) header from %s\n",
				idx, path);
			goto done;
		}
		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
		if (!name) {
			pr_warn("failed to get section(%d) name from %s\n",
				idx, path);
			goto done;
		}
		if (strcmp(name, BTF_ELF_SEC) == 0) {
			btf_data = elf_getdata(scn, 0);
			if (!btf_data) {
				pr_warn("failed to get section(%d, %s) data from %s\n",
					idx, name, path);
				goto done;
			}
			continue;
		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
			btf_ext_data = elf_getdata(scn, 0);
			if (!btf_ext_data) {
				pr_warn("failed to get section(%d, %s) data from %s\n",
					idx, name, path);
				goto done;
			}
			continue;
		}
	}

	err = 0;

	if (!btf_data) {
		err = -ENOENT;
		goto done;
	}
	btf = btf__new(btf_data->d_buf, btf_data->d_size);
	if (IS_ERR(btf))
		goto done;

	switch (gelf_getclass(elf)) {
	case ELFCLASS32:
		btf__set_pointer_size(btf, 4);
		break;
	case ELFCLASS64:
		btf__set_pointer_size(btf, 8);
		break;
	default:
		pr_warn("failed to get ELF class (bitness) for %s\n", path);
		break;
	}

	if (btf_ext && btf_ext_data) {
		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
					btf_ext_data->d_size);
		if (IS_ERR(*btf_ext))
			goto done;
	} else if (btf_ext) {
		*btf_ext = NULL;
	}
done:
	if (elf)
		elf_end(elf);
	close(fd);

	if (err)
		return ERR_PTR(err);
	/*
	 * btf is always parsed before btf_ext, so no need to clean up
	 * btf_ext, if btf loading failed
	 */
	if (IS_ERR(btf))
		return btf;
	if (btf_ext && IS_ERR(*btf_ext)) {
		btf__free(btf);
		err = PTR_ERR(*btf_ext);
		return ERR_PTR(err);
	}
	return btf;
}

struct btf *btf__parse_raw(const char *path)
{
	struct btf *btf = NULL;
	void *data = NULL;
	FILE *f = NULL;
	__u16 magic;
	int err = 0;
	long sz;

	f = fopen(path, "rb");
	if (!f) {
		err = -errno;
		goto err_out;
	}

	/* check BTF magic */
	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
		err = -EIO;
		goto err_out;
	}
	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
		/* definitely not a raw BTF */
		err = -EPROTO;
		goto err_out;
	}

	/* get file size */
	if (fseek(f, 0, SEEK_END)) {
		err = -errno;
		goto err_out;
	}
	sz = ftell(f);
	if (sz < 0) {
		err = -errno;
		goto err_out;
	}
	/* rewind to the start */
	if (fseek(f, 0, SEEK_SET)) {
		err = -errno;
		goto err_out;
	}

	/* pre-alloc memory and read all of BTF data */
	data = malloc(sz);
	if (!data) {
		err = -ENOMEM;
		goto err_out;
	}
	if (fread(data, 1, sz, f) < sz) {
		err = -EIO;
		goto err_out;
	}

	/* finally parse BTF data */
	btf = btf__new(data, sz);

err_out:
	free(data);
	if (f)
		fclose(f);
	return err ? ERR_PTR(err) : btf;
}

struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
{
	struct btf *btf;

	if (btf_ext)
		*btf_ext = NULL;

	btf = btf__parse_raw(path);
	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
		return btf;

	return btf__parse_elf(path, btf_ext);
}

static int compare_vsi_off(const void *_a, const void *_b)
{
	const struct btf_var_secinfo *a = _a;
	const struct btf_var_secinfo *b = _b;

	return a->offset - b->offset;
}

static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
			     struct btf_type *t)
{
	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
	const char *name = btf__name_by_offset(btf, t->name_off);
	const struct btf_type *t_var;
	struct btf_var_secinfo *vsi;
	const struct btf_var *var;
	int ret;

	if (!name) {
		pr_debug("No name found in string section for DATASEC kind.\n");
		return -ENOENT;
	}

	/* .extern datasec size and var offsets were set correctly during
	 * extern collection step, so just skip straight to sorting variables
	 */
	if (t->size)
		goto sort_vars;

	ret = bpf_object__section_size(obj, name, &size);
	if (ret || !size || (t->size && t->size != size)) {
		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
		return -ENOENT;
	}

	t->size = size;

	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
		t_var = btf__type_by_id(btf, vsi->type);
		var = btf_var(t_var);

		if (!btf_is_var(t_var)) {
			pr_debug("Non-VAR type seen in section %s\n", name);
			return -EINVAL;
		}

		if (var->linkage == BTF_VAR_STATIC)
			continue;

		name = btf__name_by_offset(btf, t_var->name_off);
		if (!name) {
			pr_debug("No name found in string section for VAR kind\n");
			return -ENOENT;
		}

		ret = bpf_object__variable_offset(obj, name, &off);
		if (ret) {
			pr_debug("No offset found in symbol table for VAR %s\n",
				 name);
			return -ENOENT;
		}

		vsi->offset = off;
	}

sort_vars:
	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
	return 0;
}

int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
{
	int err = 0;
	__u32 i;

	for (i = 1; i <= btf->nr_types; i++) {
		struct btf_type *t = btf_type_by_id(btf, i);

		/* Loader needs to fix up some of the things compiler
		 * couldn't get its hands on while emitting BTF. This
		 * is section size and global variable offset. We use
		 * the info from the ELF itself for this purpose.
		 */
		if (btf_is_datasec(t)) {
			err = btf_fixup_datasec(obj, btf, t);
			if (err)
				break;
		}
	}

	return err;
}

static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);

int btf__load(struct btf *btf)
{
	__u32 log_buf_size = 0, raw_size;
	char *log_buf = NULL;
	void *raw_data;
	int err = 0;

	if (btf->fd >= 0)
		return -EEXIST;

retry_load:
	if (log_buf_size) {
		log_buf = malloc(log_buf_size);
		if (!log_buf)
			return -ENOMEM;

		*log_buf = 0;
	}

	raw_data = btf_get_raw_data(btf, &raw_size, false);
	if (!raw_data) {
		err = -ENOMEM;
		goto done;
	}
	/* cache native raw data representation */
	btf->raw_size = raw_size;
	btf->raw_data = raw_data;

	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
	if (btf->fd < 0) {
		if (!log_buf || errno == ENOSPC) {
			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
					   log_buf_size << 1);
			free(log_buf);
			goto retry_load;
		}

		err = -errno;
		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
		if (*log_buf)
			pr_warn("%s\n", log_buf);
		goto done;
	}

done:
	free(log_buf);
	return err;
}

int btf__fd(const struct btf *btf)
{
	return btf->fd;
}

void btf__set_fd(struct btf *btf, int fd)
{
	btf->fd = fd;
}

static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
{
	struct btf_header *hdr = btf->hdr;
	struct btf_type *t;
	void *data, *p;
	__u32 data_sz;
	int i;

	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
	if (data) {
		*size = btf->raw_size;
		return data;
	}

	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
	data = calloc(1, data_sz);
	if (!data)
		return NULL;
	p = data;

	memcpy(p, hdr, hdr->hdr_len);
	if (swap_endian)
		btf_bswap_hdr(p);
	p += hdr->hdr_len;

	memcpy(p, btf->types_data, hdr->type_len);
	if (swap_endian) {
		for (i = 1; i <= btf->nr_types; i++) {
			t = p  + btf->type_offs[i];
			/* btf_bswap_type_rest() relies on native t->info, so
			 * we swap base type info after we swapped all the
			 * additional information
			 */
			if (btf_bswap_type_rest(t))
				goto err_out;
			btf_bswap_type_base(t);
		}
	}
	p += hdr->type_len;

	memcpy(p, btf->strs_data, hdr->str_len);
	p += hdr->str_len;

	*size = data_sz;
	return data;
err_out:
	free(data);
	return NULL;
}

const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
{
	struct btf *btf = (struct btf *)btf_ro;
	__u32 data_sz;
	void *data;

	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
	if (!data)
		return NULL;

	btf->raw_size = data_sz;
	if (btf->swapped_endian)
		btf->raw_data_swapped = data;
	else
		btf->raw_data = data;
	*size = data_sz;
	return data;
}

const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
{
	if (offset < btf->hdr->str_len)
		return btf->strs_data + offset;
	else
		return NULL;
}

const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
{
	return btf__str_by_offset(btf, offset);
}

int btf__get_from_id(__u32 id, struct btf **btf)
{
	struct bpf_btf_info btf_info = { 0 };
	__u32 len = sizeof(btf_info);
	__u32 last_size;
	int btf_fd;
	void *ptr;
	int err;

	err = 0;
	*btf = NULL;
	btf_fd = bpf_btf_get_fd_by_id(id);
	if (btf_fd < 0)
		return 0;

	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
	 * let's start with a sane default - 4KiB here - and resize it only if
	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
	 */
	btf_info.btf_size = 4096;
	last_size = btf_info.btf_size;
	ptr = malloc(last_size);
	if (!ptr) {
		err = -ENOMEM;
		goto exit_free;
	}

	memset(ptr, 0, last_size);
	btf_info.btf = ptr_to_u64(ptr);
	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);

	if (!err && btf_info.btf_size > last_size) {
		void *temp_ptr;

		last_size = btf_info.btf_size;
		temp_ptr = realloc(ptr, last_size);
		if (!temp_ptr) {
			err = -ENOMEM;
			goto exit_free;
		}
		ptr = temp_ptr;
		memset(ptr, 0, last_size);
		btf_info.btf = ptr_to_u64(ptr);
		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
	}

	if (err || btf_info.btf_size > last_size) {
		err = errno;
		goto exit_free;
	}

	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
	if (IS_ERR(*btf)) {
		err = PTR_ERR(*btf);
		*btf = NULL;
	}

exit_free:
	close(btf_fd);
	free(ptr);

	return err;
}

int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
			 __u32 expected_key_size, __u32 expected_value_size,
			 __u32 *key_type_id, __u32 *value_type_id)
{
	const struct btf_type *container_type;
	const struct btf_member *key, *value;
	const size_t max_name = 256;
	char container_name[max_name];
	__s64 key_size, value_size;
	__s32 container_id;

	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
	    max_name) {
		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
			map_name, map_name);
		return -EINVAL;
	}

	container_id = btf__find_by_name(btf, container_name);
	if (container_id < 0) {
		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
			 map_name, container_name);
		return container_id;
	}

	container_type = btf__type_by_id(btf, container_id);
	if (!container_type) {
		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
			map_name, container_id);
		return -EINVAL;
	}

	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
		pr_warn("map:%s container_name:%s is an invalid container struct\n",
			map_name, container_name);
		return -EINVAL;
	}

	key = btf_members(container_type);
	value = key + 1;

	key_size = btf__resolve_size(btf, key->type);
	if (key_size < 0) {
		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
		return key_size;
	}

	if (expected_key_size != key_size) {
		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
			map_name, (__u32)key_size, expected_key_size);
		return -EINVAL;
	}

	value_size = btf__resolve_size(btf, value->type);
	if (value_size < 0) {
		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
		return value_size;
	}

	if (expected_value_size != value_size) {
		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
			map_name, (__u32)value_size, expected_value_size);
		return -EINVAL;
	}

	*key_type_id = key->type;
	*value_type_id = value->type;

	return 0;
}

static size_t strs_hash_fn(const void *key, void *ctx)
{
	struct btf *btf = ctx;
	const char *str = btf->strs_data + (long)key;

	return str_hash(str);
}

static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
{
	struct btf *btf = ctx;
	const char *str1 = btf->strs_data + (long)key1;
	const char *str2 = btf->strs_data + (long)key2;

	return strcmp(str1, str2) == 0;
}

static void btf_invalidate_raw_data(struct btf *btf)
{
	if (btf->raw_data) {
		free(btf->raw_data);
		btf->raw_data = NULL;
	}
	if (btf->raw_data_swapped) {
		free(btf->raw_data_swapped);
		btf->raw_data_swapped = NULL;
	}
}

/* Ensure BTF is ready to be modified (by splitting into a three memory
 * regions for header, types, and strings). Also invalidate cached
 * raw_data, if any.
 */
static int btf_ensure_modifiable(struct btf *btf)
{
	void *hdr, *types, *strs, *strs_end, *s;
	struct hashmap *hash = NULL;
	long off;
	int err;

	if (btf_is_modifiable(btf)) {
		/* any BTF modification invalidates raw_data */
		btf_invalidate_raw_data(btf);
		return 0;
	}

	/* split raw data into three memory regions */
	hdr = malloc(btf->hdr->hdr_len);
	types = malloc(btf->hdr->type_len);
	strs = malloc(btf->hdr->str_len);
	if (!hdr || !types || !strs)
		goto err_out;

	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
	memcpy(types, btf->types_data, btf->hdr->type_len);
	memcpy(strs, btf->strs_data, btf->hdr->str_len);

	/* build lookup index for all strings */
	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
	if (IS_ERR(hash)) {
		err = PTR_ERR(hash);
		hash = NULL;
		goto err_out;
	}

	strs_end = strs + btf->hdr->str_len;
	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
		/* hashmap__add() returns EEXIST if string with the same
		 * content already is in the hash map
		 */
		err = hashmap__add(hash, (void *)off, (void *)off);
		if (err == -EEXIST)
			continue; /* duplicate */
		if (err)
			goto err_out;
	}

	/* only when everything was successful, update internal state */
	btf->hdr = hdr;
	btf->types_data = types;
	btf->types_data_cap = btf->hdr->type_len;
	btf->strs_data = strs;
	btf->strs_data_cap = btf->hdr->str_len;
	btf->strs_hash = hash;
	/* if BTF was created from scratch, all strings are guaranteed to be
	 * unique and deduplicated
	 */
	btf->strs_deduped = btf->hdr->str_len <= 1;

	/* invalidate raw_data representation */
	btf_invalidate_raw_data(btf);

	return 0;

err_out:
	hashmap__free(hash);
	free(hdr);
	free(types);
	free(strs);
	return -ENOMEM;
}

static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
{
	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
}

/* Find an offset in BTF string section that corresponds to a given string *s*.
 * Returns:
 *   - >0 offset into string section, if string is found;
 *   - -ENOENT, if string is not in the string section;
 *   - <0, on any other error.
 */
int btf__find_str(struct btf *btf, const char *s)
{
	long old_off, new_off, len;
	void *p;

	/* BTF needs to be in a modifiable state to build string lookup index */
	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	/* see btf__add_str() for why we do this */
	len = strlen(s) + 1;
	p = btf_add_str_mem(btf, len);
	if (!p)
		return -ENOMEM;

	new_off = btf->hdr->str_len;
	memcpy(p, s, len);

	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
		return old_off;

	return -ENOENT;
}

/* Add a string s to the BTF string section.
 * Returns:
 *   - > 0 offset into string section, on success;
 *   - < 0, on error.
 */
int btf__add_str(struct btf *btf, const char *s)
{
	long old_off, new_off, len;
	void *p;
	int err;

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	/* Hashmap keys are always offsets within btf->strs_data, so to even
	 * look up some string from the "outside", we need to first append it
	 * at the end, so that it can be addressed with an offset. Luckily,
	 * until btf->hdr->str_len is incremented, that string is just a piece
	 * of garbage for the rest of BTF code, so no harm, no foul. On the
	 * other hand, if the string is unique, it's already appended and
	 * ready to be used, only a simple btf->hdr->str_len increment away.
	 */
	len = strlen(s) + 1;
	p = btf_add_str_mem(btf, len);
	if (!p)
		return -ENOMEM;

	new_off = btf->hdr->str_len;
	memcpy(p, s, len);

	/* Now attempt to add the string, but only if the string with the same
	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
	 * string exists, we'll get its offset in old_off (that's old_key).
	 */
	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
			      HASHMAP_ADD, (const void **)&old_off, NULL);
	if (err == -EEXIST)
		return old_off; /* duplicated string, return existing offset */
	if (err)
		return err;

	btf->hdr->str_len += len; /* new unique string, adjust data length */
	return new_off;
}

static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
{
	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
			   btf->hdr->type_len, UINT_MAX, add_sz);
}

static __u32 btf_type_info(int kind, int vlen, int kflag)
{
	return (kflag << 31) | (kind << 24) | vlen;
}

static void btf_type_inc_vlen(struct btf_type *t)
{
	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
}

static int btf_commit_type(struct btf *btf, int data_sz)
{
	int err;

	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
	if (err)
		return err;

	btf->hdr->type_len += data_sz;
	btf->hdr->str_off += data_sz;
	btf->nr_types++;
	return btf->nr_types;
}

/*
 * Append new BTF_KIND_INT type with:
 *   - *name* - non-empty, non-NULL type name;
 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
{
	struct btf_type *t;
	int sz, name_off;

	/* non-empty name */
	if (!name || !name[0])
		return -EINVAL;
	/* byte_sz must be power of 2 */
	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
		return -EINVAL;
	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
		return -EINVAL;

	/* deconstruct BTF, if necessary, and invalidate raw_data */
	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type) + sizeof(int);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	/* if something goes wrong later, we might end up with an extra string,
	 * but that shouldn't be a problem, because BTF can't be constructed
	 * completely anyway and will most probably be just discarded
	 */
	name_off = btf__add_str(btf, name);
	if (name_off < 0)
		return name_off;

	t->name_off = name_off;
	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
	t->size = byte_sz;
	/* set INT info, we don't allow setting legacy bit offset/size */
	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);

	return btf_commit_type(btf, sz);
}

/* it's completely legal to append BTF types with type IDs pointing forward to
 * types that haven't been appended yet, so we only make sure that id looks
 * sane, we can't guarantee that ID will always be valid
 */
static int validate_type_id(int id)
{
	if (id < 0 || id > BTF_MAX_NR_TYPES)
		return -EINVAL;
	return 0;
}

/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
{
	struct btf_type *t;
	int sz, name_off = 0;

	if (validate_type_id(ref_type_id))
		return -EINVAL;

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	if (name && name[0]) {
		name_off = btf__add_str(btf, name);
		if (name_off < 0)
			return name_off;
	}

	t->name_off = name_off;
	t->info = btf_type_info(kind, 0, 0);
	t->type = ref_type_id;

	return btf_commit_type(btf, sz);
}

/*
 * Append new BTF_KIND_PTR type with:
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_ptr(struct btf *btf, int ref_type_id)
{
	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
}

/*
 * Append new BTF_KIND_ARRAY type with:
 *   - *index_type_id* - type ID of the type describing array index;
 *   - *elem_type_id* - type ID of the type describing array element;
 *   - *nr_elems* - the size of the array;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
{
	struct btf_type *t;
	struct btf_array *a;
	int sz;

	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
		return -EINVAL;

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	t->name_off = 0;
	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
	t->size = 0;

	a = btf_array(t);
	a->type = elem_type_id;
	a->index_type = index_type_id;
	a->nelems = nr_elems;

	return btf_commit_type(btf, sz);
}

/* generic STRUCT/UNION append function */
static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
{
	struct btf_type *t;
	int sz, name_off = 0;

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	if (name && name[0]) {
		name_off = btf__add_str(btf, name);
		if (name_off < 0)
			return name_off;
	}

	/* start out with vlen=0 and no kflag; this will be adjusted when
	 * adding each member
	 */
	t->name_off = name_off;
	t->info = btf_type_info(kind, 0, 0);
	t->size = bytes_sz;

	return btf_commit_type(btf, sz);
}

/*
 * Append new BTF_KIND_STRUCT type with:
 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
 *   - *byte_sz* - size of the struct, in bytes;
 *
 * Struct initially has no fields in it. Fields can be added by
 * btf__add_field() right after btf__add_struct() succeeds. 
 *
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
{
	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
}

/*
 * Append new BTF_KIND_UNION type with:
 *   - *name* - name of the union, can be NULL or empty for anonymous union;
 *   - *byte_sz* - size of the union, in bytes;
 *
 * Union initially has no fields in it. Fields can be added by
 * btf__add_field() right after btf__add_union() succeeds. All fields
 * should have *bit_offset* of 0.
 *
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
{
	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
}

static struct btf_type *btf_last_type(struct btf *btf)
{
	return btf_type_by_id(btf, btf__get_nr_types(btf));
}

/*
 * Append new field for the current STRUCT/UNION type with:
 *   - *name* - name of the field, can be NULL or empty for anonymous field;
 *   - *type_id* - type ID for the type describing field type;
 *   - *bit_offset* - bit offset of the start of the field within struct/union;
 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
 * Returns:
 *   -  0, on success;
 *   - <0, on error.
 */
int btf__add_field(struct btf *btf, const char *name, int type_id,
		   __u32 bit_offset, __u32 bit_size)
{
	struct btf_type *t;
	struct btf_member *m;
	bool is_bitfield;
	int sz, name_off = 0;

	/* last type should be union/struct */
	if (btf->nr_types == 0)
		return -EINVAL;
	t = btf_last_type(btf);
	if (!btf_is_composite(t))
		return -EINVAL;

	if (validate_type_id(type_id))
		return -EINVAL;
	/* best-effort bit field offset/size enforcement */
	is_bitfield = bit_size || (bit_offset % 8 != 0);
	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
		return -EINVAL;

	/* only offset 0 is allowed for unions */
	if (btf_is_union(t) && bit_offset)
		return -EINVAL;

	/* decompose and invalidate raw data */
	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_member);
	m = btf_add_type_mem(btf, sz);
	if (!m)
		return -ENOMEM;

	if (name && name[0]) {
		name_off = btf__add_str(btf, name);
		if (name_off < 0)
			return name_off;
	}

	m->name_off = name_off;
	m->type = type_id;
	m->offset = bit_offset | (bit_size << 24);

	/* btf_add_type_mem can invalidate t pointer */
	t = btf_last_type(btf);
	/* update parent type's vlen and kflag */
	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));

	btf->hdr->type_len += sz;
	btf->hdr->str_off += sz;
	return 0;
}

/*
 * Append new BTF_KIND_ENUM type with:
 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
 *   - *byte_sz* - size of the enum, in bytes.
 *
 * Enum initially has no enum values in it (and corresponds to enum forward
 * declaration). Enumerator values can be added by btf__add_enum_value()
 * immediately after btf__add_enum() succeeds.
 *
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
{
	struct btf_type *t;
	int sz, name_off = 0;

	/* byte_sz must be power of 2 */
	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
		return -EINVAL;

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	if (name && name[0]) {
		name_off = btf__add_str(btf, name);
		if (name_off < 0)
			return name_off;
	}

	/* start out with vlen=0; it will be adjusted when adding enum values */
	t->name_off = name_off;
	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
	t->size = byte_sz;

	return btf_commit_type(btf, sz);
}

/*
 * Append new enum value for the current ENUM type with:
 *   - *name* - name of the enumerator value, can't be NULL or empty;
 *   - *value* - integer value corresponding to enum value *name*;
 * Returns:
 *   -  0, on success;
 *   - <0, on error.
 */
int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
{
	struct btf_type *t;
	struct btf_enum *v;
	int sz, name_off;

	/* last type should be BTF_KIND_ENUM */
	if (btf->nr_types == 0)
		return -EINVAL;
	t = btf_last_type(btf);
	if (!btf_is_enum(t))
		return -EINVAL;

	/* non-empty name */
	if (!name || !name[0])
		return -EINVAL;
	if (value < INT_MIN || value > UINT_MAX)
		return -E2BIG;

	/* decompose and invalidate raw data */
	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_enum);
	v = btf_add_type_mem(btf, sz);
	if (!v)
		return -ENOMEM;

	name_off = btf__add_str(btf, name);
	if (name_off < 0)
		return name_off;

	v->name_off = name_off;
	v->val = value;

	/* update parent type's vlen */
	t = btf_last_type(btf);
	btf_type_inc_vlen(t);

	btf->hdr->type_len += sz;
	btf->hdr->str_off += sz;
	return 0;
}

/*
 * Append new BTF_KIND_FWD type with:
 *   - *name*, non-empty/non-NULL name;
 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
{
	if (!name || !name[0])
		return -EINVAL;

	switch (fwd_kind) {
	case BTF_FWD_STRUCT:
	case BTF_FWD_UNION: {
		struct btf_type *t;
		int id;

		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
		if (id <= 0)
			return id;
		t = btf_type_by_id(btf, id);
		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
		return id;
	}
	case BTF_FWD_ENUM:
		/* enum forward in BTF currently is just an enum with no enum
		 * values; we also assume a standard 4-byte size for it
		 */
		return btf__add_enum(btf, name, sizeof(int));
	default:
		return -EINVAL;
	}
}

/*
 * Append new BTF_KING_TYPEDEF type with:
 *   - *name*, non-empty/non-NULL name;
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
{
	if (!name || !name[0])
		return -EINVAL;

	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
}

/*
 * Append new BTF_KIND_VOLATILE type with:
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_volatile(struct btf *btf, int ref_type_id)
{
	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
}

/*
 * Append new BTF_KIND_CONST type with:
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_const(struct btf *btf, int ref_type_id)
{
	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
}

/*
 * Append new BTF_KIND_RESTRICT type with:
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_restrict(struct btf *btf, int ref_type_id)
{
	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
}

/*
 * Append new BTF_KIND_FUNC type with:
 *   - *name*, non-empty/non-NULL name;
 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_func(struct btf *btf, const char *name,
		  enum btf_func_linkage linkage, int proto_type_id)
{
	int id;

	if (!name || !name[0])
		return -EINVAL;
	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
	    linkage != BTF_FUNC_EXTERN)
		return -EINVAL;

	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
	if (id > 0) {
		struct btf_type *t = btf_type_by_id(btf, id);

		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
	}
	return id;
}

/*
 * Append new BTF_KIND_FUNC_PROTO with:
 *   - *ret_type_id* - type ID for return result of a function.
 *
 * Function prototype initially has no arguments, but they can be added by
 * btf__add_func_param() one by one, immediately after
 * btf__add_func_proto() succeeded.
 *
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_func_proto(struct btf *btf, int ret_type_id)
{
	struct btf_type *t;
	int sz;

	if (validate_type_id(ret_type_id))
		return -EINVAL;

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	/* start out with vlen=0; this will be adjusted when adding enum
	 * values, if necessary
	 */
	t->name_off = 0;
	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
	t->type = ret_type_id;

	return btf_commit_type(btf, sz);
}

/*
 * Append new function parameter for current FUNC_PROTO type with:
 *   - *name* - parameter name, can be NULL or empty;
 *   - *type_id* - type ID describing the type of the parameter.
 * Returns:
 *   -  0, on success;
 *   - <0, on error.
 */
int btf__add_func_param(struct btf *btf, const char *name, int type_id)
{
	struct btf_type *t;
	struct btf_param *p;
	int sz, name_off = 0;

	if (validate_type_id(type_id))
		return -EINVAL;

	/* last type should be BTF_KIND_FUNC_PROTO */
	if (btf->nr_types == 0)
		return -EINVAL;
	t = btf_last_type(btf);
	if (!btf_is_func_proto(t))
		return -EINVAL;

	/* decompose and invalidate raw data */
	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_param);
	p = btf_add_type_mem(btf, sz);
	if (!p)
		return -ENOMEM;

	if (name && name[0]) {
		name_off = btf__add_str(btf, name);
		if (name_off < 0)
			return name_off;
	}

	p->name_off = name_off;
	p->type = type_id;

	/* update parent type's vlen */
	t = btf_last_type(btf);
	btf_type_inc_vlen(t);

	btf->hdr->type_len += sz;
	btf->hdr->str_off += sz;
	return 0;
}

/*
 * Append new BTF_KIND_VAR type with:
 *   - *name* - non-empty/non-NULL name;
 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
 *   - *type_id* - type ID of the type describing the type of the variable.
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
{
	struct btf_type *t;
	struct btf_var *v;
	int sz, name_off;

	/* non-empty name */
	if (!name || !name[0])
		return -EINVAL;
	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
	    linkage != BTF_VAR_GLOBAL_EXTERN)
		return -EINVAL;
	if (validate_type_id(type_id))
		return -EINVAL;

	/* deconstruct BTF, if necessary, and invalidate raw_data */
	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	name_off = btf__add_str(btf, name);
	if (name_off < 0)
		return name_off;

	t->name_off = name_off;
	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
	t->type = type_id;

	v = btf_var(t);
	v->linkage = linkage;

	return btf_commit_type(btf, sz);
}

/*
 * Append new BTF_KIND_DATASEC type with:
 *   - *name* - non-empty/non-NULL name;
 *   - *byte_sz* - data section size, in bytes.
 *
 * Data section is initially empty. Variables info can be added with
 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
 *
 * Returns:
 *   - >0, type ID of newly added BTF type;
 *   - <0, on error.
 */
int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
{
	struct btf_type *t;
	int sz, name_off;

	/* non-empty name */
	if (!name || !name[0])
		return -EINVAL;

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_type);
	t = btf_add_type_mem(btf, sz);
	if (!t)
		return -ENOMEM;

	name_off = btf__add_str(btf, name);
	if (name_off < 0)
		return name_off;

	/* start with vlen=0, which will be update as var_secinfos are added */
	t->name_off = name_off;
	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
	t->size = byte_sz;

	return btf_commit_type(btf, sz);
}

/*
 * Append new data section variable information entry for current DATASEC type:
 *   - *var_type_id* - type ID, describing type of the variable;
 *   - *offset* - variable offset within data section, in bytes;
 *   - *byte_sz* - variable size, in bytes.
 *
 * Returns:
 *   -  0, on success;
 *   - <0, on error.
 */
int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
{
	struct btf_type *t;
	struct btf_var_secinfo *v;
	int sz;

	/* last type should be BTF_KIND_DATASEC */
	if (btf->nr_types == 0)
		return -EINVAL;
	t = btf_last_type(btf);
	if (!btf_is_datasec(t))
		return -EINVAL;

	if (validate_type_id(var_type_id))
		return -EINVAL;

	/* decompose and invalidate raw data */
	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	sz = sizeof(struct btf_var_secinfo);
	v = btf_add_type_mem(btf, sz);
	if (!v)
		return -ENOMEM;

	v->type = var_type_id;
	v->offset = offset;
	v->size = byte_sz;

	/* update parent type's vlen */
	t = btf_last_type(btf);
	btf_type_inc_vlen(t);

	btf->hdr->type_len += sz;
	btf->hdr->str_off += sz;
	return 0;
}

struct btf_ext_sec_setup_param {
	__u32 off;
	__u32 len;
	__u32 min_rec_size;
	struct btf_ext_info *ext_info;
	const char *desc;
};

static int btf_ext_setup_info(struct btf_ext *btf_ext,
			      struct btf_ext_sec_setup_param *ext_sec)
{
	const struct btf_ext_info_sec *sinfo;
	struct btf_ext_info *ext_info;
	__u32 info_left, record_size;
	/* The start of the info sec (including the __u32 record_size). */
	void *info;

	if (ext_sec->len == 0)
		return 0;

	if (ext_sec->off & 0x03) {
		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
		     ext_sec->desc);
		return -EINVAL;
	}

	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
	info_left = ext_sec->len;

	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
			 ext_sec->desc, ext_sec->off, ext_sec->len);
		return -EINVAL;
	}

	/* At least a record size */
	if (info_left < sizeof(__u32)) {
		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
		return -EINVAL;
	}

	/* The record size needs to meet the minimum standard */
	record_size = *(__u32 *)info;
	if (record_size < ext_sec->min_rec_size ||
	    record_size & 0x03) {
		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
			 ext_sec->desc, record_size);
		return -EINVAL;
	}

	sinfo = info + sizeof(__u32);
	info_left -= sizeof(__u32);

	/* If no records, return failure now so .BTF.ext won't be used. */
	if (!info_left) {
		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
		return -EINVAL;
	}

	while (info_left) {
		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
		__u64 total_record_size;
		__u32 num_records;

		if (info_left < sec_hdrlen) {
			pr_debug("%s section header is not found in .BTF.ext\n",
			     ext_sec->desc);
			return -EINVAL;
		}

		num_records = sinfo->num_info;
		if (num_records == 0) {
			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
			     ext_sec->desc);
			return -EINVAL;
		}

		total_record_size = sec_hdrlen +
				    (__u64)num_records * record_size;
		if (info_left < total_record_size) {
			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
			     ext_sec->desc);
			return -EINVAL;
		}

		info_left -= total_record_size;
		sinfo = (void *)sinfo + total_record_size;
	}

	ext_info = ext_sec->ext_info;
	ext_info->len = ext_sec->len - sizeof(__u32);
	ext_info->rec_size = record_size;
	ext_info->info = info + sizeof(__u32);

	return 0;
}

static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
{
	struct btf_ext_sec_setup_param param = {
		.off = btf_ext->hdr->func_info_off,
		.len = btf_ext->hdr->func_info_len,
		.min_rec_size = sizeof(struct bpf_func_info_min),
		.ext_info = &btf_ext->func_info,
		.desc = "func_info"
	};

	return btf_ext_setup_info(btf_ext, &param);
}

static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
{
	struct btf_ext_sec_setup_param param = {
		.off = btf_ext->hdr->line_info_off,
		.len = btf_ext->hdr->line_info_len,
		.min_rec_size = sizeof(struct bpf_line_info_min),
		.ext_info = &btf_ext->line_info,
		.desc = "line_info",
	};

	return btf_ext_setup_info(btf_ext, &param);
}

static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
{
	struct btf_ext_sec_setup_param param = {
		.off = btf_ext->hdr->core_relo_off,
		.len = btf_ext->hdr->core_relo_len,
		.min_rec_size = sizeof(struct bpf_core_relo),
		.ext_info = &btf_ext->core_relo_info,
		.desc = "core_relo",
	};

	return btf_ext_setup_info(btf_ext, &param);
}

static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
{
	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;

	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
	    data_size < hdr->hdr_len) {
		pr_debug("BTF.ext header not found");
		return -EINVAL;
	}

	if (hdr->magic == bswap_16(BTF_MAGIC)) {
		pr_warn("BTF.ext in non-native endianness is not supported\n");
		return -ENOTSUP;
	} else if (hdr->magic != BTF_MAGIC) {
		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
		return -EINVAL;
	}

	if (hdr->version != BTF_VERSION) {
		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
		return -ENOTSUP;
	}

	if (hdr->flags) {
		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
		return -ENOTSUP;
	}

	if (data_size == hdr->hdr_len) {
		pr_debug("BTF.ext has no data\n");
		return -EINVAL;
	}

	return 0;
}

void btf_ext__free(struct btf_ext *btf_ext)
{
	if (IS_ERR_OR_NULL(btf_ext))
		return;
	free(btf_ext->data);
	free(btf_ext);
}

struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
{
	struct btf_ext *btf_ext;
	int err;

	err = btf_ext_parse_hdr(data, size);
	if (err)
		return ERR_PTR(err);

	btf_ext = calloc(1, sizeof(struct btf_ext));
	if (!btf_ext)
		return ERR_PTR(-ENOMEM);

	btf_ext->data_size = size;
	btf_ext->data = malloc(size);
	if (!btf_ext->data) {
		err = -ENOMEM;
		goto done;
	}
	memcpy(btf_ext->data, data, size);

	if (btf_ext->hdr->hdr_len <
	    offsetofend(struct btf_ext_header, line_info_len))
		goto done;
	err = btf_ext_setup_func_info(btf_ext);
	if (err)
		goto done;

	err = btf_ext_setup_line_info(btf_ext);
	if (err)
		goto done;

	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
		goto done;
	err = btf_ext_setup_core_relos(btf_ext);
	if (err)
		goto done;

done:
	if (err) {
		btf_ext__free(btf_ext);
		return ERR_PTR(err);
	}

	return btf_ext;
}

const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
{
	*size = btf_ext->data_size;
	return btf_ext->data;
}

static int btf_ext_reloc_info(const struct btf *btf,
			      const struct btf_ext_info *ext_info,
			      const char *sec_name, __u32 insns_cnt,
			      void **info, __u32 *cnt)
{
	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
	__u32 i, record_size, existing_len, records_len;
	struct btf_ext_info_sec *sinfo;
	const char *info_sec_name;
	__u64 remain_len;
	void *data;

	record_size = ext_info->rec_size;
	sinfo = ext_info->info;
	remain_len = ext_info->len;
	while (remain_len > 0) {
		records_len = sinfo->num_info * record_size;
		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
		if (strcmp(info_sec_name, sec_name)) {
			remain_len -= sec_hdrlen + records_len;
			sinfo = (void *)sinfo + sec_hdrlen + records_len;
			continue;
		}

		existing_len = (*cnt) * record_size;
		data = realloc(*info, existing_len + records_len);
		if (!data)
			return -ENOMEM;

		memcpy(data + existing_len, sinfo->data, records_len);
		/* adjust insn_off only, the rest data will be passed
		 * to the kernel.
		 */
		for (i = 0; i < sinfo->num_info; i++) {
			__u32 *insn_off;

			insn_off = data + existing_len + (i * record_size);
			*insn_off = *insn_off / sizeof(struct bpf_insn) +
				insns_cnt;
		}
		*info = data;
		*cnt += sinfo->num_info;
		return 0;
	}

	return -ENOENT;
}

int btf_ext__reloc_func_info(const struct btf *btf,
			     const struct btf_ext *btf_ext,
			     const char *sec_name, __u32 insns_cnt,
			     void **func_info, __u32 *cnt)
{
	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
				  insns_cnt, func_info, cnt);
}

int btf_ext__reloc_line_info(const struct btf *btf,
			     const struct btf_ext *btf_ext,
			     const char *sec_name, __u32 insns_cnt,
			     void **line_info, __u32 *cnt)
{
	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
				  insns_cnt, line_info, cnt);
}

__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
{
	return btf_ext->func_info.rec_size;
}

__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
{
	return btf_ext->line_info.rec_size;
}

struct btf_dedup;

static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
				       const struct btf_dedup_opts *opts);
static void btf_dedup_free(struct btf_dedup *d);
static int btf_dedup_strings(struct btf_dedup *d);
static int btf_dedup_prim_types(struct btf_dedup *d);
static int btf_dedup_struct_types(struct btf_dedup *d);
static int btf_dedup_ref_types(struct btf_dedup *d);
static int btf_dedup_compact_types(struct btf_dedup *d);
static int btf_dedup_remap_types(struct btf_dedup *d);

/*
 * Deduplicate BTF types and strings.
 *
 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
 * section with all BTF type descriptors and string data. It overwrites that
 * memory in-place with deduplicated types and strings without any loss of
 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
 * is provided, all the strings referenced from .BTF.ext section are honored
 * and updated to point to the right offsets after deduplication.
 *
 * If function returns with error, type/string data might be garbled and should
 * be discarded.
 *
 * More verbose and detailed description of both problem btf_dedup is solving,
 * as well as solution could be found at:
 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
 *
 * Problem description and justification
 * =====================================
 *
 * BTF type information is typically emitted either as a result of conversion
 * from DWARF to BTF or directly by compiler. In both cases, each compilation
 * unit contains information about a subset of all the types that are used
 * in an application. These subsets are frequently overlapping and contain a lot
 * of duplicated information when later concatenated together into a single
 * binary. This algorithm ensures that each unique type is represented by single
 * BTF type descriptor, greatly reducing resulting size of BTF data.
 *
 * Compilation unit isolation and subsequent duplication of data is not the only
 * problem. The same type hierarchy (e.g., struct and all the type that struct
 * references) in different compilation units can be represented in BTF to
 * various degrees of completeness (or, rather, incompleteness) due to
 * struct/union forward declarations.
 *
 * Let's take a look at an example, that we'll use to better understand the
 * problem (and solution). Suppose we have two compilation units, each using
 * same `struct S`, but each of them having incomplete type information about
 * struct's fields:
 *
 * // CU #1:
 * struct S;
 * struct A {
 *	int a;
 *	struct A* self;
 *	struct S* parent;
 * };
 * struct B;
 * struct S {
 *	struct A* a_ptr;
 *	struct B* b_ptr;
 * };
 *
 * // CU #2:
 * struct S;
 * struct A;
 * struct B {
 *	int b;
 *	struct B* self;
 *	struct S* parent;
 * };
 * struct S {
 *	struct A* a_ptr;
 *	struct B* b_ptr;
 * };
 *
 * In case of CU #1, BTF data will know only that `struct B` exist (but no
 * more), but will know the complete type information about `struct A`. While
 * for CU #2, it will know full type information about `struct B`, but will
 * only know about forward declaration of `struct A` (in BTF terms, it will
 * have `BTF_KIND_FWD` type descriptor with name `B`).
 *
 * This compilation unit isolation means that it's possible that there is no
 * single CU with complete type information describing structs `S`, `A`, and
 * `B`. Also, we might get tons of duplicated and redundant type information.
 *
 * Additional complication we need to keep in mind comes from the fact that
 * types, in general, can form graphs containing cycles, not just DAGs.
 *
 * While algorithm does deduplication, it also merges and resolves type
 * information (unless disabled throught `struct btf_opts`), whenever possible.
 * E.g., in the example above with two compilation units having partial type
 * information for structs `A` and `B`, the output of algorithm will emit
 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
 * (as well as type information for `int` and pointers), as if they were defined
 * in a single compilation unit as:
 *
 * struct A {
 *	int a;
 *	struct A* self;
 *	struct S* parent;
 * };
 * struct B {
 *	int b;
 *	struct B* self;
 *	struct S* parent;
 * };
 * struct S {
 *	struct A* a_ptr;
 *	struct B* b_ptr;
 * };
 *
 * Algorithm summary
 * =================
 *
 * Algorithm completes its work in 6 separate passes:
 *
 * 1. Strings deduplication.
 * 2. Primitive types deduplication (int, enum, fwd).
 * 3. Struct/union types deduplication.
 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
 *    protos, and const/volatile/restrict modifiers).
 * 5. Types compaction.
 * 6. Types remapping.
 *
 * Algorithm determines canonical type descriptor, which is a single
 * representative type for each truly unique type. This canonical type is the
 * one that will go into final deduplicated BTF type information. For
 * struct/unions, it is also the type that algorithm will merge additional type
 * information into (while resolving FWDs), as it discovers it from data in
 * other CUs. Each input BTF type eventually gets either mapped to itself, if
 * that type is canonical, or to some other type, if that type is equivalent
 * and was chosen as canonical representative. This mapping is stored in
 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
 * FWD type got resolved to.
 *
 * To facilitate fast discovery of canonical types, we also maintain canonical
 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
 * that match that signature. With sufficiently good choice of type signature
 * hashing function, we can limit number of canonical types for each unique type
 * signature to a very small number, allowing to find canonical type for any
 * duplicated type very quickly.
 *
 * Struct/union deduplication is the most critical part and algorithm for
 * deduplicating structs/unions is described in greater details in comments for
 * `btf_dedup_is_equiv` function.
 */
int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
	       const struct btf_dedup_opts *opts)
{
	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
	int err;

	if (IS_ERR(d)) {
		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
		return -EINVAL;
	}

	if (btf_ensure_modifiable(btf))
		return -ENOMEM;

	err = btf_dedup_strings(d);
	if (err < 0) {
		pr_debug("btf_dedup_strings failed:%d\n", err);
		goto done;
	}
	err = btf_dedup_prim_types(d);
	if (err < 0) {
		pr_debug("btf_dedup_prim_types failed:%d\n", err);
		goto done;
	}
	err = btf_dedup_struct_types(d);
	if (err < 0) {
		pr_debug("btf_dedup_struct_types failed:%d\n", err);
		goto done;
	}
	err = btf_dedup_ref_types(d);
	if (err < 0) {
		pr_debug("btf_dedup_ref_types failed:%d\n", err);
		goto done;
	}
	err = btf_dedup_compact_types(d);
	if (err < 0) {
		pr_debug("btf_dedup_compact_types failed:%d\n", err);
		goto done;
	}
	err = btf_dedup_remap_types(d);
	if (err < 0) {
		pr_debug("btf_dedup_remap_types failed:%d\n", err);
		goto done;
	}

done:
	btf_dedup_free(d);
	return err;
}

#define BTF_UNPROCESSED_ID ((__u32)-1)
#define BTF_IN_PROGRESS_ID ((__u32)-2)

struct btf_dedup {
	/* .BTF section to be deduped in-place */
	struct btf *btf;
	/*
	 * Optional .BTF.ext section. When provided, any strings referenced
	 * from it will be taken into account when deduping strings
	 */
	struct btf_ext *btf_ext;
	/*
	 * This is a map from any type's signature hash to a list of possible
	 * canonical representative type candidates. Hash collisions are
	 * ignored, so even types of various kinds can share same list of
	 * candidates, which is fine because we rely on subsequent
	 * btf_xxx_equal() checks to authoritatively verify type equality.
	 */
	struct hashmap *dedup_table;
	/* Canonical types map */
	__u32 *map;
	/* Hypothetical mapping, used during type graph equivalence checks */
	__u32 *hypot_map;
	__u32 *hypot_list;
	size_t hypot_cnt;
	size_t hypot_cap;
	/* Various option modifying behavior of algorithm */
	struct btf_dedup_opts opts;
};

struct btf_str_ptr {
	const char *str;
	__u32 new_off;
	bool used;
};

struct btf_str_ptrs {
	struct btf_str_ptr *ptrs;
	const char *data;
	__u32 cnt;
	__u32 cap;
};

static long hash_combine(long h, long value)
{
	return h * 31 + value;
}

#define for_each_dedup_cand(d, node, hash) \
	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)

static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
{
	return hashmap__append(d->dedup_table,
			       (void *)hash, (void *)(long)type_id);
}

static int btf_dedup_hypot_map_add(struct btf_dedup *d,
				   __u32 from_id, __u32 to_id)
{
	if (d->hypot_cnt == d->hypot_cap) {
		__u32 *new_list;

		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
		if (!new_list)
			return -ENOMEM;
		d->hypot_list = new_list;
	}
	d->hypot_list[d->hypot_cnt++] = from_id;
	d->hypot_map[from_id] = to_id;
	return 0;
}

static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
{
	int i;

	for (i = 0; i < d->hypot_cnt; i++)
		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
	d->hypot_cnt = 0;
}

static void btf_dedup_free(struct btf_dedup *d)
{
	hashmap__free(d->dedup_table);
	d->dedup_table = NULL;

	free(d->map);
	d->map = NULL;

	free(d->hypot_map);
	d->hypot_map = NULL;

	free(d->hypot_list);
	d->hypot_list = NULL;

	free(d);
}

static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
{
	return (size_t)key;
}

static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
{
	return 0;
}

static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
{
	return k1 == k2;
}

static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
				       const struct btf_dedup_opts *opts)
{
	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
	int i, err = 0;

	if (!d)
		return ERR_PTR(-ENOMEM);

	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
	/* dedup_table_size is now used only to force collisions in tests */
	if (opts && opts->dedup_table_size == 1)
		hash_fn = btf_dedup_collision_hash_fn;

	d->btf = btf;
	d->btf_ext = btf_ext;

	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
	if (IS_ERR(d->dedup_table)) {
		err = PTR_ERR(d->dedup_table);
		d->dedup_table = NULL;
		goto done;
	}

	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
	if (!d->map) {
		err = -ENOMEM;
		goto done;
	}
	/* special BTF "void" type is made canonical immediately */
	d->map[0] = 0;
	for (i = 1; i <= btf->nr_types; i++) {
		struct btf_type *t = btf_type_by_id(d->btf, i);

		/* VAR and DATASEC are never deduped and are self-canonical */
		if (btf_is_var(t) || btf_is_datasec(t))
			d->map[i] = i;
		else
			d->map[i] = BTF_UNPROCESSED_ID;
	}

	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
	if (!d->hypot_map) {
		err = -ENOMEM;
		goto done;
	}
	for (i = 0; i <= btf->nr_types; i++)
		d->hypot_map[i] = BTF_UNPROCESSED_ID;

done:
	if (err) {
		btf_dedup_free(d);
		return ERR_PTR(err);
	}

	return d;
}

typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);

/*
 * Iterate over all possible places in .BTF and .BTF.ext that can reference
 * string and pass pointer to it to a provided callback `fn`.
 */
static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
{
	void *line_data_cur, *line_data_end;
	int i, j, r, rec_size;
	struct btf_type *t;

	for (i = 1; i <= d->btf->nr_types; i++) {
		t = btf_type_by_id(d->btf, i);
		r = fn(&t->name_off, ctx);
		if (r)
			return r;

		switch (btf_kind(t)) {
		case BTF_KIND_STRUCT:
		case BTF_KIND_UNION: {
			struct btf_member *m = btf_members(t);
			__u16 vlen = btf_vlen(t);

			for (j = 0; j < vlen; j++) {
				r = fn(&m->name_off, ctx);
				if (r)
					return r;
				m++;
			}
			break;
		}
		case BTF_KIND_ENUM: {
			struct btf_enum *m = btf_enum(t);
			__u16 vlen = btf_vlen(t);

			for (j = 0; j < vlen; j++) {
				r = fn(&m->name_off, ctx);
				if (r)
					return r;
				m++;
			}
			break;
		}
		case BTF_KIND_FUNC_PROTO: {
			struct btf_param *m = btf_params(t);
			__u16 vlen = btf_vlen(t);

			for (j = 0; j < vlen; j++) {
				r = fn(&m->name_off, ctx);
				if (r)
					return r;
				m++;
			}
			break;
		}
		default:
			break;
		}
	}

	if (!d->btf_ext)
		return 0;

	line_data_cur = d->btf_ext->line_info.info;
	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
	rec_size = d->btf_ext->line_info.rec_size;

	while (line_data_cur < line_data_end) {
		struct btf_ext_info_sec *sec = line_data_cur;
		struct bpf_line_info_min *line_info;
		__u32 num_info = sec->num_info;

		r = fn(&sec->sec_name_off, ctx);
		if (r)
			return r;

		line_data_cur += sizeof(struct btf_ext_info_sec);
		for (i = 0; i < num_info; i++) {
			line_info = line_data_cur;
			r = fn(&line_info->file_name_off, ctx);
			if (r)
				return r;
			r = fn(&line_info->line_off, ctx);
			if (r)
				return r;
			line_data_cur += rec_size;
		}
	}

	return 0;
}

static int str_sort_by_content(const void *a1, const void *a2)
{
	const struct btf_str_ptr *p1 = a1;
	const struct btf_str_ptr *p2 = a2;

	return strcmp(p1->str, p2->str);
}

static int str_sort_by_offset(const void *a1, const void *a2)
{
	const struct btf_str_ptr *p1 = a1;
	const struct btf_str_ptr *p2 = a2;

	if (p1->str != p2->str)
		return p1->str < p2->str ? -1 : 1;
	return 0;
}

static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
{
	const struct btf_str_ptr *p = pelem;

	if (str_ptr != p->str)
		return (const char *)str_ptr < p->str ? -1 : 1;
	return 0;
}

static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
{
	struct btf_str_ptrs *strs;
	struct btf_str_ptr *s;

	if (*str_off_ptr == 0)
		return 0;

	strs = ctx;
	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
	if (!s)
		return -EINVAL;
	s->used = true;
	return 0;
}

static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
{
	struct btf_str_ptrs *strs;
	struct btf_str_ptr *s;

	if (*str_off_ptr == 0)
		return 0;

	strs = ctx;
	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
	if (!s)
		return -EINVAL;
	*str_off_ptr = s->new_off;
	return 0;
}

/*
 * Dedup string and filter out those that are not referenced from either .BTF
 * or .BTF.ext (if provided) sections.
 *
 * This is done by building index of all strings in BTF's string section,
 * then iterating over all entities that can reference strings (e.g., type
 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
 * strings as used. After that all used strings are deduped and compacted into
 * sequential blob of memory and new offsets are calculated. Then all the string
 * references are iterated again and rewritten using new offsets.
 */
static int btf_dedup_strings(struct btf_dedup *d)
{
	char *start = d->btf->strs_data;
	char *end = start + d->btf->hdr->str_len;
	char *p = start, *tmp_strs = NULL;
	struct btf_str_ptrs strs = {
		.cnt = 0,
		.cap = 0,
		.ptrs = NULL,
		.data = start,
	};
	int i, j, err = 0, grp_idx;
	bool grp_used;

	if (d->btf->strs_deduped)
		return 0;

	/* build index of all strings */
	while (p < end) {
		if (strs.cnt + 1 > strs.cap) {
			struct btf_str_ptr *new_ptrs;

			strs.cap += max(strs.cnt / 2, 16U);
			new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0]));
			if (!new_ptrs) {
				err = -ENOMEM;
				goto done;
			}
			strs.ptrs = new_ptrs;
		}

		strs.ptrs[strs.cnt].str = p;
		strs.ptrs[strs.cnt].used = false;

		p += strlen(p) + 1;
		strs.cnt++;
	}

	/* temporary storage for deduplicated strings */
	tmp_strs = malloc(d->btf->hdr->str_len);
	if (!tmp_strs) {
		err = -ENOMEM;
		goto done;
	}

	/* mark all used strings */
	strs.ptrs[0].used = true;
	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
	if (err)
		goto done;

	/* sort strings by context, so that we can identify duplicates */
	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);

	/*
	 * iterate groups of equal strings and if any instance in a group was
	 * referenced, emit single instance and remember new offset
	 */
	p = tmp_strs;
	grp_idx = 0;
	grp_used = strs.ptrs[0].used;
	/* iterate past end to avoid code duplication after loop */
	for (i = 1; i <= strs.cnt; i++) {
		/*
		 * when i == strs.cnt, we want to skip string comparison and go
		 * straight to handling last group of strings (otherwise we'd
		 * need to handle last group after the loop w/ duplicated code)
		 */
		if (i < strs.cnt &&
		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
			grp_used = grp_used || strs.ptrs[i].used;
			continue;
		}

		/*
		 * this check would have been required after the loop to handle
		 * last group of strings, but due to <= condition in a loop
		 * we avoid that duplication
		 */
		if (grp_used) {
			int new_off = p - tmp_strs;
			__u32 len = strlen(strs.ptrs[grp_idx].str);

			memmove(p, strs.ptrs[grp_idx].str, len + 1);
			for (j = grp_idx; j < i; j++)
				strs.ptrs[j].new_off = new_off;
			p += len + 1;
		}

		if (i < strs.cnt) {
			grp_idx = i;
			grp_used = strs.ptrs[i].used;
		}
	}

	/* replace original strings with deduped ones */
	d->btf->hdr->str_len = p - tmp_strs;
	memmove(start, tmp_strs, d->btf->hdr->str_len);
	end = start + d->btf->hdr->str_len;

	/* restore original order for further binary search lookups */
	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);

	/* remap string offsets */
	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
	if (err)
		goto done;

	d->btf->hdr->str_len = end - start;
	d->btf->strs_deduped = true;

done:
	free(tmp_strs);
	free(strs.ptrs);
	return err;
}

static long btf_hash_common(struct btf_type *t)
{
	long h;

	h = hash_combine(0, t->name_off);
	h = hash_combine(h, t->info);
	h = hash_combine(h, t->size);
	return h;
}

static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
{
	return t1->name_off == t2->name_off &&
	       t1->info == t2->info &&
	       t1->size == t2->size;
}

/* Calculate type signature hash of INT. */
static long btf_hash_int(struct btf_type *t)
{
	__u32 info = *(__u32 *)(t + 1);
	long h;

	h = btf_hash_common(t);
	h = hash_combine(h, info);
	return h;
}

/* Check structural equality of two INTs. */
static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
{
	__u32 info1, info2;

	if (!btf_equal_common(t1, t2))
		return false;
	info1 = *(__u32 *)(t1 + 1);
	info2 = *(__u32 *)(t2 + 1);
	return info1 == info2;
}

/* Calculate type signature hash of ENUM. */
static long btf_hash_enum(struct btf_type *t)
{
	long h;

	/* don't hash vlen and enum members to support enum fwd resolving */
	h = hash_combine(0, t->name_off);
	h = hash_combine(h, t->info & ~0xffff);
	h = hash_combine(h, t->size);
	return h;
}

/* Check structural equality of two ENUMs. */
static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
{
	const struct btf_enum *m1, *m2;
	__u16 vlen;
	int i;

	if (!btf_equal_common(t1, t2))
		return false;

	vlen = btf_vlen(t1);
	m1 = btf_enum(t1);
	m2 = btf_enum(t2);
	for (i = 0; i < vlen; i++) {
		if (m1->name_off != m2->name_off || m1->val != m2->val)
			return false;
		m1++;
		m2++;
	}
	return true;
}

static inline bool btf_is_enum_fwd(struct btf_type *t)
{
	return btf_is_enum(t) && btf_vlen(t) == 0;
}

static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
{
	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
		return btf_equal_enum(t1, t2);
	/* ignore vlen when comparing */
	return t1->name_off == t2->name_off &&
	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
	       t1->size == t2->size;
}

/*
 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
 * as referenced type IDs equivalence is established separately during type
 * graph equivalence check algorithm.
 */
static long btf_hash_struct(struct btf_type *t)
{
	const struct btf_member *member = btf_members(t);
	__u32 vlen = btf_vlen(t);
	long h = btf_hash_common(t);
	int i;

	for (i = 0; i < vlen; i++) {
		h = hash_combine(h, member->name_off);
		h = hash_combine(h, member->offset);
		/* no hashing of referenced type ID, it can be unresolved yet */
		member++;
	}
	return h;
}

/*
 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
 * IDs. This check is performed during type graph equivalence check and
 * referenced types equivalence is checked separately.
 */
static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
{
	const struct btf_member *m1, *m2;
	__u16 vlen;
	int i;

	if (!btf_equal_common(t1, t2))
		return false;

	vlen = btf_vlen(t1);
	m1 = btf_members(t1);
	m2 = btf_members(t2);
	for (i = 0; i < vlen; i++) {
		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
			return false;
		m1++;
		m2++;
	}
	return true;
}

/*
 * Calculate type signature hash of ARRAY, including referenced type IDs,
 * under assumption that they were already resolved to canonical type IDs and
 * are not going to change.
 */
static long btf_hash_array(struct btf_type *t)
{
	const struct btf_array *info = btf_array(t);
	long h = btf_hash_common(t);

	h = hash_combine(h, info->type);
	h = hash_combine(h, info->index_type);
	h = hash_combine(h, info->nelems);
	return h;
}

/*
 * Check exact equality of two ARRAYs, taking into account referenced
 * type IDs, under assumption that they were already resolved to canonical
 * type IDs and are not going to change.
 * This function is called during reference types deduplication to compare
 * ARRAY to potential canonical representative.
 */
static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
{
	const struct btf_array *info1, *info2;

	if (!btf_equal_common(t1, t2))
		return false;

	info1 = btf_array(t1);
	info2 = btf_array(t2);
	return info1->type == info2->type &&
	       info1->index_type == info2->index_type &&
	       info1->nelems == info2->nelems;
}

/*
 * Check structural compatibility of two ARRAYs, ignoring referenced type
 * IDs. This check is performed during type graph equivalence check and
 * referenced types equivalence is checked separately.
 */
static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
{
	if (!btf_equal_common(t1, t2))
		return false;

	return btf_array(t1)->nelems == btf_array(t2)->nelems;
}

/*
 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
 * under assumption that they were already resolved to canonical type IDs and
 * are not going to change.
 */
static long btf_hash_fnproto(struct btf_type *t)
{
	const struct btf_param *member = btf_params(t);
	__u16 vlen = btf_vlen(t);
	long h = btf_hash_common(t);
	int i;

	for (i = 0; i < vlen; i++) {
		h = hash_combine(h, member->name_off);
		h = hash_combine(h, member->type);
		member++;
	}
	return h;
}

/*
 * Check exact equality of two FUNC_PROTOs, taking into account referenced
 * type IDs, under assumption that they were already resolved to canonical
 * type IDs and are not going to change.
 * This function is called during reference types deduplication to compare
 * FUNC_PROTO to potential canonical representative.
 */
static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
{
	const struct btf_param *m1, *m2;
	__u16 vlen;
	int i;

	if (!btf_equal_common(t1, t2))
		return false;

	vlen = btf_vlen(t1);
	m1 = btf_params(t1);
	m2 = btf_params(t2);
	for (i = 0; i < vlen; i++) {
		if (m1->name_off != m2->name_off || m1->type != m2->type)
			return false;
		m1++;
		m2++;
	}
	return true;
}

/*
 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
 * IDs. This check is performed during type graph equivalence check and
 * referenced types equivalence is checked separately.
 */
static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
{
	const struct btf_param *m1, *m2;
	__u16 vlen;
	int i;

	/* skip return type ID */
	if (t1->name_off != t2->name_off || t1->info != t2->info)
		return false;

	vlen = btf_vlen(t1);
	m1 = btf_params(t1);
	m2 = btf_params(t2);
	for (i = 0; i < vlen; i++) {
		if (m1->name_off != m2->name_off)
			return false;
		m1++;
		m2++;
	}
	return true;
}

/*
 * Deduplicate primitive types, that can't reference other types, by calculating
 * their type signature hash and comparing them with any possible canonical
 * candidate. If no canonical candidate matches, type itself is marked as
 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
 */
static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
{
	struct btf_type *t = btf_type_by_id(d->btf, type_id);
	struct hashmap_entry *hash_entry;
	struct btf_type *cand;
	/* if we don't find equivalent type, then we are canonical */
	__u32 new_id = type_id;
	__u32 cand_id;
	long h;

	switch (btf_kind(t)) {
	case BTF_KIND_CONST:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_RESTRICT:
	case BTF_KIND_PTR:
	case BTF_KIND_TYPEDEF:
	case BTF_KIND_ARRAY:
	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION:
	case BTF_KIND_FUNC:
	case BTF_KIND_FUNC_PROTO:
	case BTF_KIND_VAR:
	case BTF_KIND_DATASEC:
		return 0;

	case BTF_KIND_INT:
		h = btf_hash_int(t);
		for_each_dedup_cand(d, hash_entry, h) {
			cand_id = (__u32)(long)hash_entry->value;
			cand = btf_type_by_id(d->btf, cand_id);
			if (btf_equal_int(t, cand)) {
				new_id = cand_id;
				break;
			}
		}
		break;

	case BTF_KIND_ENUM:
		h = btf_hash_enum(t);
		for_each_dedup_cand(d, hash_entry, h) {
			cand_id = (__u32)(long)hash_entry->value;
			cand = btf_type_by_id(d->btf, cand_id);
			if (btf_equal_enum(t, cand)) {
				new_id = cand_id;
				break;
			}
			if (d->opts.dont_resolve_fwds)
				continue;
			if (btf_compat_enum(t, cand)) {
				if (btf_is_enum_fwd(t)) {
					/* resolve fwd to full enum */
					new_id = cand_id;
					break;
				}
				/* resolve canonical enum fwd to full enum */
				d->map[cand_id] = type_id;
			}
		}
		break;

	case BTF_KIND_FWD:
		h = btf_hash_common(t);
		for_each_dedup_cand(d, hash_entry, h) {
			cand_id = (__u32)(long)hash_entry->value;
			cand = btf_type_by_id(d->btf, cand_id);
			if (btf_equal_common(t, cand)) {
				new_id = cand_id;
				break;
			}
		}
		break;

	default:
		return -EINVAL;
	}

	d->map[type_id] = new_id;
	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
		return -ENOMEM;

	return 0;
}

static int btf_dedup_prim_types(struct btf_dedup *d)
{
	int i, err;

	for (i = 1; i <= d->btf->nr_types; i++) {
		err = btf_dedup_prim_type(d, i);
		if (err)
			return err;
	}
	return 0;
}

/*
 * Check whether type is already mapped into canonical one (could be to itself).
 */
static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
{
	return d->map[type_id] <= BTF_MAX_NR_TYPES;
}

/*
 * Resolve type ID into its canonical type ID, if any; otherwise return original
 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
 * STRUCT/UNION link and resolve it into canonical type ID as well.
 */
static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
{
	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
		type_id = d->map[type_id];
	return type_id;
}

/*
 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
 * type ID.
 */
static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
{
	__u32 orig_type_id = type_id;

	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
		return type_id;

	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
		type_id = d->map[type_id];

	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
		return type_id;

	return orig_type_id;
}


static inline __u16 btf_fwd_kind(struct btf_type *t)
{
	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
}

/*
 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
 * call it "candidate graph" in this description for brevity) to a type graph
 * formed by (potential) canonical struct/union ("canonical graph" for brevity
 * here, though keep in mind that not all types in canonical graph are
 * necessarily canonical representatives themselves, some of them might be
 * duplicates or its uniqueness might not have been established yet).
 * Returns:
 *  - >0, if type graphs are equivalent;
 *  -  0, if not equivalent;
 *  - <0, on error.
 *
 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
 * equivalence of BTF types at each step. If at any point BTF types in candidate
 * and canonical graphs are not compatible structurally, whole graphs are
 * incompatible. If types are structurally equivalent (i.e., all information
 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
 * If a type references other types, then those referenced types are checked
 * for equivalence recursively.
 *
 * During DFS traversal, if we find that for current `canon_id` type we
 * already have some mapping in hypothetical map, we check for two possible
 * situations:
 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
 *     happen when type graphs have cycles. In this case we assume those two
 *     types are equivalent.
 *   - `canon_id` is mapped to different type. This is contradiction in our
 *     hypothetical mapping, because same graph in canonical graph corresponds
 *     to two different types in candidate graph, which for equivalent type
 *     graphs shouldn't happen. This condition terminates equivalence check
 *     with negative result.
 *
 * If type graphs traversal exhausts types to check and find no contradiction,
 * then type graphs are equivalent.
 *
 * When checking types for equivalence, there is one special case: FWD types.
 * If FWD type resolution is allowed and one of the types (either from canonical
 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
 * flag) and their names match, hypothetical mapping is updated to point from
 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
 *
 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
 * if there are two exactly named (or anonymous) structs/unions that are
 * compatible structurally, one of which has FWD field, while other is concrete
 * STRUCT/UNION, but according to C sources they are different structs/unions
 * that are referencing different types with the same name. This is extremely
 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
 * this logic is causing problems.
 *
 * Doing FWD resolution means that both candidate and/or canonical graphs can
 * consists of portions of the graph that come from multiple compilation units.
 * This is due to the fact that types within single compilation unit are always
 * deduplicated and FWDs are already resolved, if referenced struct/union
 * definiton is available. So, if we had unresolved FWD and found corresponding
 * STRUCT/UNION, they will be from different compilation units. This
 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
 * type graph will likely have at least two different BTF types that describe
 * same type (e.g., most probably there will be two different BTF types for the
 * same 'int' primitive type) and could even have "overlapping" parts of type
 * graph that describe same subset of types.
 *
 * This in turn means that our assumption that each type in canonical graph
 * must correspond to exactly one type in candidate graph might not hold
 * anymore and will make it harder to detect contradictions using hypothetical
 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
 * resolution only in canonical graph. FWDs in candidate graphs are never
 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
 * that can occur:
 *   - Both types in canonical and candidate graphs are FWDs. If they are
 *     structurally equivalent, then they can either be both resolved to the
 *     same STRUCT/UNION or not resolved at all. In both cases they are
 *     equivalent and there is no need to resolve FWD on candidate side.
 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
 *     so nothing to resolve as well, algorithm will check equivalence anyway.
 *   - Type in canonical graph is FWD, while type in candidate is concrete
 *     STRUCT/UNION. In this case candidate graph comes from single compilation
 *     unit, so there is exactly one BTF type for each unique C type. After
 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
 *     in canonical graph mapping to single BTF type in candidate graph, but
 *     because hypothetical mapping maps from canonical to candidate types, it's
 *     alright, and we still maintain the property of having single `canon_id`
 *     mapping to single `cand_id` (there could be two different `canon_id`
 *     mapped to the same `cand_id`, but it's not contradictory).
 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
 *     graph is FWD. In this case we are just going to check compatibility of
 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
 *     canonical graph.
 */
static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
			      __u32 canon_id)
{
	struct btf_type *cand_type;
	struct btf_type *canon_type;
	__u32 hypot_type_id;
	__u16 cand_kind;
	__u16 canon_kind;
	int i, eq;

	/* if both resolve to the same canonical, they must be equivalent */
	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
		return 1;

	canon_id = resolve_fwd_id(d, canon_id);

	hypot_type_id = d->hypot_map[canon_id];
	if (hypot_type_id <= BTF_MAX_NR_TYPES)
		return hypot_type_id == cand_id;

	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
		return -ENOMEM;

	cand_type = btf_type_by_id(d->btf, cand_id);
	canon_type = btf_type_by_id(d->btf, canon_id);
	cand_kind = btf_kind(cand_type);
	canon_kind = btf_kind(canon_type);

	if (cand_type->name_off != canon_type->name_off)
		return 0;

	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
	if (!d->opts.dont_resolve_fwds
	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
	    && cand_kind != canon_kind) {
		__u16 real_kind;
		__u16 fwd_kind;

		if (cand_kind == BTF_KIND_FWD) {
			real_kind = canon_kind;
			fwd_kind = btf_fwd_kind(cand_type);
		} else {
			real_kind = cand_kind;
			fwd_kind = btf_fwd_kind(canon_type);
		}
		return fwd_kind == real_kind;
	}

	if (cand_kind != canon_kind)
		return 0;

	switch (cand_kind) {
	case BTF_KIND_INT:
		return btf_equal_int(cand_type, canon_type);

	case BTF_KIND_ENUM:
		if (d->opts.dont_resolve_fwds)
			return btf_equal_enum(cand_type, canon_type);
		else
			return btf_compat_enum(cand_type, canon_type);

	case BTF_KIND_FWD:
		return btf_equal_common(cand_type, canon_type);

	case BTF_KIND_CONST:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_RESTRICT:
	case BTF_KIND_PTR:
	case BTF_KIND_TYPEDEF:
	case BTF_KIND_FUNC:
		if (cand_type->info != canon_type->info)
			return 0;
		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);

	case BTF_KIND_ARRAY: {
		const struct btf_array *cand_arr, *canon_arr;

		if (!btf_compat_array(cand_type, canon_type))
			return 0;
		cand_arr = btf_array(cand_type);
		canon_arr = btf_array(canon_type);
		eq = btf_dedup_is_equiv(d,
			cand_arr->index_type, canon_arr->index_type);
		if (eq <= 0)
			return eq;
		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
	}

	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION: {
		const struct btf_member *cand_m, *canon_m;
		__u16 vlen;

		if (!btf_shallow_equal_struct(cand_type, canon_type))
			return 0;
		vlen = btf_vlen(cand_type);
		cand_m = btf_members(cand_type);
		canon_m = btf_members(canon_type);
		for (i = 0; i < vlen; i++) {
			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
			if (eq <= 0)
				return eq;
			cand_m++;
			canon_m++;
		}

		return 1;
	}

	case BTF_KIND_FUNC_PROTO: {
		const struct btf_param *cand_p, *canon_p;
		__u16 vlen;

		if (!btf_compat_fnproto(cand_type, canon_type))
			return 0;
		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
		if (eq <= 0)
			return eq;
		vlen = btf_vlen(cand_type);
		cand_p = btf_params(cand_type);
		canon_p = btf_params(canon_type);
		for (i = 0; i < vlen; i++) {
			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
			if (eq <= 0)
				return eq;
			cand_p++;
			canon_p++;
		}
		return 1;
	}

	default:
		return -EINVAL;
	}
	return 0;
}

/*
 * Use hypothetical mapping, produced by successful type graph equivalence
 * check, to augment existing struct/union canonical mapping, where possible.
 *
 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
 * it doesn't matter if FWD type was part of canonical graph or candidate one,
 * we are recording the mapping anyway. As opposed to carefulness required
 * for struct/union correspondence mapping (described below), for FWD resolution
 * it's not important, as by the time that FWD type (reference type) will be
 * deduplicated all structs/unions will be deduped already anyway.
 *
 * Recording STRUCT/UNION mapping is purely a performance optimization and is
 * not required for correctness. It needs to be done carefully to ensure that
 * struct/union from candidate's type graph is not mapped into corresponding
 * struct/union from canonical type graph that itself hasn't been resolved into
 * canonical representative. The only guarantee we have is that canonical
 * struct/union was determined as canonical and that won't change. But any
 * types referenced through that struct/union fields could have been not yet
 * resolved, so in case like that it's too early to establish any kind of
 * correspondence between structs/unions.
 *
 * No canonical correspondence is derived for primitive types (they are already
 * deduplicated completely already anyway) or reference types (they rely on
 * stability of struct/union canonical relationship for equivalence checks).
 */
static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
{
	__u32 cand_type_id, targ_type_id;
	__u16 t_kind, c_kind;
	__u32 t_id, c_id;
	int i;

	for (i = 0; i < d->hypot_cnt; i++) {
		cand_type_id = d->hypot_list[i];
		targ_type_id = d->hypot_map[cand_type_id];
		t_id = resolve_type_id(d, targ_type_id);
		c_id = resolve_type_id(d, cand_type_id);
		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
		/*
		 * Resolve FWD into STRUCT/UNION.
		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
		 * mapped to canonical representative (as opposed to
		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
		 * eventually that struct is going to be mapped and all resolved
		 * FWDs will automatically resolve to correct canonical
		 * representative. This will happen before ref type deduping,
		 * which critically depends on stability of these mapping. This
		 * stability is not a requirement for STRUCT/UNION equivalence
		 * checks, though.
		 */
		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
			d->map[c_id] = t_id;
		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
			d->map[t_id] = c_id;

		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
		    c_kind != BTF_KIND_FWD &&
		    is_type_mapped(d, c_id) &&
		    !is_type_mapped(d, t_id)) {
			/*
			 * as a perf optimization, we can map struct/union
			 * that's part of type graph we just verified for
			 * equivalence. We can do that for struct/union that has
			 * canonical representative only, though.
			 */
			d->map[t_id] = c_id;
		}
	}
}

/*
 * Deduplicate struct/union types.
 *
 * For each struct/union type its type signature hash is calculated, taking
 * into account type's name, size, number, order and names of fields, but
 * ignoring type ID's referenced from fields, because they might not be deduped
 * completely until after reference types deduplication phase. This type hash
 * is used to iterate over all potential canonical types, sharing same hash.
 * For each canonical candidate we check whether type graphs that they form
 * (through referenced types in fields and so on) are equivalent using algorithm
 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
 * potentially map other structs/unions to their canonical representatives,
 * if such relationship hasn't yet been established. This speeds up algorithm
 * by eliminating some of the duplicate work.
 *
 * If no matching canonical representative was found, struct/union is marked
 * as canonical for itself and is added into btf_dedup->dedup_table hash map
 * for further look ups.
 */
static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
{
	struct btf_type *cand_type, *t;
	struct hashmap_entry *hash_entry;
	/* if we don't find equivalent type, then we are canonical */
	__u32 new_id = type_id;
	__u16 kind;
	long h;

	/* already deduped or is in process of deduping (loop detected) */
	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
		return 0;

	t = btf_type_by_id(d->btf, type_id);
	kind = btf_kind(t);

	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
		return 0;

	h = btf_hash_struct(t);
	for_each_dedup_cand(d, hash_entry, h) {
		__u32 cand_id = (__u32)(long)hash_entry->value;
		int eq;

		/*
		 * Even though btf_dedup_is_equiv() checks for
		 * btf_shallow_equal_struct() internally when checking two
		 * structs (unions) for equivalence, we need to guard here
		 * from picking matching FWD type as a dedup candidate.
		 * This can happen due to hash collision. In such case just
		 * relying on btf_dedup_is_equiv() would lead to potentially
		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
		 * FWD and compatible STRUCT/UNION are considered equivalent.
		 */
		cand_type = btf_type_by_id(d->btf, cand_id);
		if (!btf_shallow_equal_struct(t, cand_type))
			continue;

		btf_dedup_clear_hypot_map(d);
		eq = btf_dedup_is_equiv(d, type_id, cand_id);
		if (eq < 0)
			return eq;
		if (!eq)
			continue;
		new_id = cand_id;
		btf_dedup_merge_hypot_map(d);
		break;
	}

	d->map[type_id] = new_id;
	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
		return -ENOMEM;

	return 0;
}

static int btf_dedup_struct_types(struct btf_dedup *d)
{
	int i, err;

	for (i = 1; i <= d->btf->nr_types; i++) {
		err = btf_dedup_struct_type(d, i);
		if (err)
			return err;
	}
	return 0;
}

/*
 * Deduplicate reference type.
 *
 * Once all primitive and struct/union types got deduplicated, we can easily
 * deduplicate all other (reference) BTF types. This is done in two steps:
 *
 * 1. Resolve all referenced type IDs into their canonical type IDs. This
 * resolution can be done either immediately for primitive or struct/union types
 * (because they were deduped in previous two phases) or recursively for
 * reference types. Recursion will always terminate at either primitive or
 * struct/union type, at which point we can "unwind" chain of reference types
 * one by one. There is no danger of encountering cycles because in C type
 * system the only way to form type cycle is through struct/union, so any chain
 * of reference types, even those taking part in a type cycle, will inevitably
 * reach struct/union at some point.
 *
 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
 * becomes "stable", in the sense that no further deduplication will cause
 * any changes to it. With that, it's now possible to calculate type's signature
 * hash (this time taking into account referenced type IDs) and loop over all
 * potential canonical representatives. If no match was found, current type
 * will become canonical representative of itself and will be added into
 * btf_dedup->dedup_table as another possible canonical representative.
 */
static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
{
	struct hashmap_entry *hash_entry;
	__u32 new_id = type_id, cand_id;
	struct btf_type *t, *cand;
	/* if we don't find equivalent type, then we are representative type */
	int ref_type_id;
	long h;

	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
		return -ELOOP;
	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
		return resolve_type_id(d, type_id);

	t = btf_type_by_id(d->btf, type_id);
	d->map[type_id] = BTF_IN_PROGRESS_ID;

	switch (btf_kind(t)) {
	case BTF_KIND_CONST:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_RESTRICT:
	case BTF_KIND_PTR:
	case BTF_KIND_TYPEDEF:
	case BTF_KIND_FUNC:
		ref_type_id = btf_dedup_ref_type(d, t->type);
		if (ref_type_id < 0)
			return ref_type_id;
		t->type = ref_type_id;

		h = btf_hash_common(t);
		for_each_dedup_cand(d, hash_entry, h) {
			cand_id = (__u32)(long)hash_entry->value;
			cand = btf_type_by_id(d->btf, cand_id);
			if (btf_equal_common(t, cand)) {
				new_id = cand_id;
				break;
			}
		}
		break;

	case BTF_KIND_ARRAY: {
		struct btf_array *info = btf_array(t);

		ref_type_id = btf_dedup_ref_type(d, info->type);
		if (ref_type_id < 0)
			return ref_type_id;
		info->type = ref_type_id;

		ref_type_id = btf_dedup_ref_type(d, info->index_type);
		if (ref_type_id < 0)
			return ref_type_id;
		info->index_type = ref_type_id;

		h = btf_hash_array(t);
		for_each_dedup_cand(d, hash_entry, h) {
			cand_id = (__u32)(long)hash_entry->value;
			cand = btf_type_by_id(d->btf, cand_id);
			if (btf_equal_array(t, cand)) {
				new_id = cand_id;
				break;
			}
		}
		break;
	}

	case BTF_KIND_FUNC_PROTO: {
		struct btf_param *param;
		__u16 vlen;
		int i;

		ref_type_id = btf_dedup_ref_type(d, t->type);
		if (ref_type_id < 0)
			return ref_type_id;
		t->type = ref_type_id;

		vlen = btf_vlen(t);
		param = btf_params(t);
		for (i = 0; i < vlen; i++) {
			ref_type_id = btf_dedup_ref_type(d, param->type);
			if (ref_type_id < 0)
				return ref_type_id;
			param->type = ref_type_id;
			param++;
		}

		h = btf_hash_fnproto(t);
		for_each_dedup_cand(d, hash_entry, h) {
			cand_id = (__u32)(long)hash_entry->value;
			cand = btf_type_by_id(d->btf, cand_id);
			if (btf_equal_fnproto(t, cand)) {
				new_id = cand_id;
				break;
			}
		}
		break;
	}

	default:
		return -EINVAL;
	}

	d->map[type_id] = new_id;
	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
		return -ENOMEM;

	return new_id;
}

static int btf_dedup_ref_types(struct btf_dedup *d)
{
	int i, err;

	for (i = 1; i <= d->btf->nr_types; i++) {
		err = btf_dedup_ref_type(d, i);
		if (err < 0)
			return err;
	}
	/* we won't need d->dedup_table anymore */
	hashmap__free(d->dedup_table);
	d->dedup_table = NULL;
	return 0;
}

/*
 * Compact types.
 *
 * After we established for each type its corresponding canonical representative
 * type, we now can eliminate types that are not canonical and leave only
 * canonical ones layed out sequentially in memory by copying them over
 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
 * a map from original type ID to a new compacted type ID, which will be used
 * during next phase to "fix up" type IDs, referenced from struct/union and
 * reference types.
 */
static int btf_dedup_compact_types(struct btf_dedup *d)
{
	__u32 *new_offs;
	__u32 next_type_id = 1;
	void *p;
	int i, len;

	/* we are going to reuse hypot_map to store compaction remapping */
	d->hypot_map[0] = 0;
	for (i = 1; i <= d->btf->nr_types; i++)
		d->hypot_map[i] = BTF_UNPROCESSED_ID;

	p = d->btf->types_data;

	for (i = 1; i <= d->btf->nr_types; i++) {
		if (d->map[i] != i)
			continue;

		len = btf_type_size(btf__type_by_id(d->btf, i));
		if (len < 0)
			return len;

		memmove(p, btf__type_by_id(d->btf, i), len);
		d->hypot_map[i] = next_type_id;
		d->btf->type_offs[next_type_id] = p - d->btf->types_data;
		p += len;
		next_type_id++;
	}

	/* shrink struct btf's internal types index and update btf_header */
	d->btf->nr_types = next_type_id - 1;
	d->btf->type_offs_cap = d->btf->nr_types + 1;
	d->btf->hdr->type_len = p - d->btf->types_data;
	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
				       sizeof(*new_offs));
	if (!new_offs)
		return -ENOMEM;
	d->btf->type_offs = new_offs;
	d->btf->hdr->str_off = d->btf->hdr->type_len;
	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
	return 0;
}

/*
 * Figure out final (deduplicated and compacted) type ID for provided original
 * `type_id` by first resolving it into corresponding canonical type ID and
 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
 * which is populated during compaction phase.
 */
static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
{
	__u32 resolved_type_id, new_type_id;

	resolved_type_id = resolve_type_id(d, type_id);
	new_type_id = d->hypot_map[resolved_type_id];
	if (new_type_id > BTF_MAX_NR_TYPES)
		return -EINVAL;
	return new_type_id;
}

/*
 * Remap referenced type IDs into deduped type IDs.
 *
 * After BTF types are deduplicated and compacted, their final type IDs may
 * differ from original ones. The map from original to a corresponding
 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
 * compaction phase. During remapping phase we are rewriting all type IDs
 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
 * their final deduped type IDs.
 */
static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
{
	struct btf_type *t = btf_type_by_id(d->btf, type_id);
	int i, r;

	switch (btf_kind(t)) {
	case BTF_KIND_INT:
	case BTF_KIND_ENUM:
		break;

	case BTF_KIND_FWD:
	case BTF_KIND_CONST:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_RESTRICT:
	case BTF_KIND_PTR:
	case BTF_KIND_TYPEDEF:
	case BTF_KIND_FUNC:
	case BTF_KIND_VAR:
		r = btf_dedup_remap_type_id(d, t->type);
		if (r < 0)
			return r;
		t->type = r;
		break;

	case BTF_KIND_ARRAY: {
		struct btf_array *arr_info = btf_array(t);

		r = btf_dedup_remap_type_id(d, arr_info->type);
		if (r < 0)
			return r;
		arr_info->type = r;
		r = btf_dedup_remap_type_id(d, arr_info->index_type);
		if (r < 0)
			return r;
		arr_info->index_type = r;
		break;
	}

	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION: {
		struct btf_member *member = btf_members(t);
		__u16 vlen = btf_vlen(t);

		for (i = 0; i < vlen; i++) {
			r = btf_dedup_remap_type_id(d, member->type);
			if (r < 0)
				return r;
			member->type = r;
			member++;
		}
		break;
	}

	case BTF_KIND_FUNC_PROTO: {
		struct btf_param *param = btf_params(t);
		__u16 vlen = btf_vlen(t);

		r = btf_dedup_remap_type_id(d, t->type);
		if (r < 0)
			return r;
		t->type = r;

		for (i = 0; i < vlen; i++) {
			r = btf_dedup_remap_type_id(d, param->type);
			if (r < 0)
				return r;
			param->type = r;
			param++;
		}
		break;
	}

	case BTF_KIND_DATASEC: {
		struct btf_var_secinfo *var = btf_var_secinfos(t);
		__u16 vlen = btf_vlen(t);

		for (i = 0; i < vlen; i++) {
			r = btf_dedup_remap_type_id(d, var->type);
			if (r < 0)
				return r;
			var->type = r;
			var++;
		}
		break;
	}

	default:
		return -EINVAL;
	}

	return 0;
}

static int btf_dedup_remap_types(struct btf_dedup *d)
{
	int i, r;

	for (i = 1; i <= d->btf->nr_types; i++) {
		r = btf_dedup_remap_type(d, i);
		if (r < 0)
			return r;
	}
	return 0;
}

/*
 * Probe few well-known locations for vmlinux kernel image and try to load BTF
 * data out of it to use for target BTF.
 */
struct btf *libbpf_find_kernel_btf(void)
{
	struct {
		const char *path_fmt;
		bool raw_btf;
	} locations[] = {
		/* try canonical vmlinux BTF through sysfs first */
		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
		/* fall back to trying to find vmlinux ELF on disk otherwise */
		{ "/boot/vmlinux-%1$s" },
		{ "/lib/modules/%1$s/vmlinux-%1$s" },
		{ "/lib/modules/%1$s/build/vmlinux" },
		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
	};
	char path[PATH_MAX + 1];
	struct utsname buf;
	struct btf *btf;
	int i;

	uname(&buf);

	for (i = 0; i < ARRAY_SIZE(locations); i++) {
		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);

		if (access(path, R_OK))
			continue;

		if (locations[i].raw_btf)
			btf = btf__parse_raw(path);
		else
			btf = btf__parse_elf(path, NULL);

		pr_debug("loading kernel BTF '%s': %ld\n",
			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
		if (IS_ERR(btf))
			continue;

		return btf;
	}

	pr_warn("failed to find valid kernel BTF\n");
	return ERR_PTR(-ESRCH);
}