summaryrefslogtreecommitdiffstats
path: root/sound/soc/intel/skylake/skl-sst-cldma.c
blob: 5a2c35f58fda96a5e91b46fe6d015333e0b52b07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// SPDX-License-Identifier: GPL-2.0-only
/*
 * skl-sst-cldma.c - Code Loader DMA handler
 *
 * Copyright (C) 2015, Intel Corporation.
 * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

#include <linux/device.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"

static void skl_cldma_int_enable(struct sst_dsp *ctx)
{
	sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
				SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
}

void skl_cldma_int_disable(struct sst_dsp *ctx)
{
	sst_dsp_shim_update_bits_unlocked(ctx,
			SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
}

static void skl_cldma_stream_run(struct sst_dsp  *ctx, bool enable)
{
	unsigned char val;
	int timeout;

	sst_dsp_shim_update_bits_unlocked(ctx,
			SKL_ADSP_REG_CL_SD_CTL,
			CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));

	udelay(3);
	timeout = 300;
	do {
		/* waiting for hardware to report that the stream Run bit set */
		val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
			CL_SD_CTL_RUN_MASK;
		if (enable && val)
			break;
		else if (!enable && !val)
			break;
		udelay(3);
	} while (--timeout);

	if (timeout == 0)
		dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
}

static void skl_cldma_stream_clear(struct sst_dsp  *ctx)
{
	/* make sure Run bit is cleared before setting stream register */
	skl_cldma_stream_run(ctx, 0);

	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
				CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
				CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
				CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
				CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));

	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);

	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
}

/* Code loader helper APIs */
static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
		struct snd_dma_buffer *dmab_data,
		__le32 **bdlp, int size, int with_ioc)
{
	__le32 *bdl = *bdlp;

	ctx->cl_dev.frags = 0;
	while (size > 0) {
		phys_addr_t addr = virt_to_phys(dmab_data->area +
				(ctx->cl_dev.frags * ctx->cl_dev.bufsize));

		bdl[0] = cpu_to_le32(lower_32_bits(addr));
		bdl[1] = cpu_to_le32(upper_32_bits(addr));

		bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);

		size -= ctx->cl_dev.bufsize;
		bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);

		bdl += 4;
		ctx->cl_dev.frags++;
	}
}

/*
 * Setup controller
 * Configure the registers to update the dma buffer address and
 * enable interrupts.
 * Note: Using the channel 1 for transfer
 */
static void skl_cldma_setup_controller(struct sst_dsp  *ctx,
		struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
		u32 count)
{
	skl_cldma_stream_clear(ctx);
	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
			CL_SD_BDLPLBA(dmab_bdl->addr));
	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
			CL_SD_BDLPUBA(dmab_bdl->addr));

	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
			CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
			CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
			CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
			CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
}

static void skl_cldma_setup_spb(struct sst_dsp  *ctx,
		unsigned int size, bool enable)
{
	if (enable)
		sst_dsp_shim_update_bits_unlocked(ctx,
				SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
				CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
				CL_SPBFIFO_SPBFCCTL_SPIBE(1));

	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
}

static void skl_cldma_cleanup_spb(struct sst_dsp  *ctx)
{
	sst_dsp_shim_update_bits_unlocked(ctx,
			SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
			CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
			CL_SPBFIFO_SPBFCCTL_SPIBE(0));

	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
}

static void skl_cldma_cleanup(struct sst_dsp  *ctx)
{
	skl_cldma_cleanup_spb(ctx);
	skl_cldma_stream_clear(ctx);

	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
}

int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
{
	int ret = 0;

	if (!wait_event_timeout(ctx->cl_dev.wait_queue,
				ctx->cl_dev.wait_condition,
				msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
		dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
		ret = -EIO;
		goto cleanup;
	}

	dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
	if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
		dev_err(ctx->dev, "%s: DMA Error\n", __func__);
		ret = -EIO;
	}

cleanup:
	ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
	return ret;
}

static void skl_cldma_stop(struct sst_dsp *ctx)
{
	skl_cldma_stream_run(ctx, false);
}

static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
		const void *curr_pos, bool intr_enable, bool trigger)
{
	dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
	dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
			ctx->cl_dev.dma_buffer_offset, trigger);
	dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);

	/*
	 * Check if the size exceeds buffer boundary. If it exceeds
	 * max_buffer size, then copy till buffer size and then copy
	 * remaining buffer from the start of ring buffer.
	 */
	if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
		unsigned int size_b = ctx->cl_dev.bufsize -
					ctx->cl_dev.dma_buffer_offset;
		memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
			curr_pos, size_b);
		size -= size_b;
		curr_pos += size_b;
		ctx->cl_dev.dma_buffer_offset = 0;
	}

	memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
			curr_pos, size);

	if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
		ctx->cl_dev.dma_buffer_offset = 0;
	else
		ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;

	ctx->cl_dev.wait_condition = false;

	if (intr_enable)
		skl_cldma_int_enable(ctx);

	ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
	if (trigger)
		ctx->cl_dev.ops.cl_trigger(ctx, true);
}

/*
 * The CL dma doesn't have any way to update the transfer status until a BDL
 * buffer is fully transferred
 *
 * So Copying is divided in two parts.
 * 1. Interrupt on buffer done where the size to be transferred is more than
 *    ring buffer size.
 * 2. Polling on fw register to identify if data left to transferred doesn't
 *    fill the ring buffer. Caller takes care of polling the required status
 *    register to identify the transfer status.
 * 3. if wait flag is set, waits for DBL interrupt to copy the next chunk till
 *    bytes_left is 0.
 *    if wait flag is not set, doesn't wait for BDL interrupt. after ccopying
 *    the first chunk return the no of bytes_left to be copied.
 */
static int
skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin,
			u32 total_size, bool wait)
{
	int ret = 0;
	bool start = true;
	unsigned int excess_bytes;
	u32 size;
	unsigned int bytes_left = total_size;
	const void *curr_pos = bin;

	if (total_size <= 0)
		return -EINVAL;

	dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);

	while (bytes_left) {
		if (bytes_left > ctx->cl_dev.bufsize) {

			/*
			 * dma transfers only till the write pointer as
			 * updated in spib
			 */
			if (ctx->cl_dev.curr_spib_pos == 0)
				ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;

			size = ctx->cl_dev.bufsize;
			skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);

			if (wait) {
				start = false;
				ret = skl_cldma_wait_interruptible(ctx);
				if (ret < 0) {
					skl_cldma_stop(ctx);
					return ret;
				}
			}
		} else {
			skl_cldma_int_disable(ctx);

			if ((ctx->cl_dev.curr_spib_pos + bytes_left)
							<= ctx->cl_dev.bufsize) {
				ctx->cl_dev.curr_spib_pos += bytes_left;
			} else {
				excess_bytes = bytes_left -
					(ctx->cl_dev.bufsize -
					ctx->cl_dev.curr_spib_pos);
				ctx->cl_dev.curr_spib_pos = excess_bytes;
			}

			size = bytes_left;
			skl_cldma_fill_buffer(ctx, size,
					curr_pos, false, start);
		}
		bytes_left -= size;
		curr_pos = curr_pos + size;
		if (!wait)
			return bytes_left;
	}

	return bytes_left;
}

void skl_cldma_process_intr(struct sst_dsp *ctx)
{
	u8 cl_dma_intr_status;

	cl_dma_intr_status =
		sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);

	if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
		ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
	else
		ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;

	ctx->cl_dev.wait_condition = true;
	wake_up(&ctx->cl_dev.wait_queue);
}

int skl_cldma_prepare(struct sst_dsp *ctx)
{
	int ret;
	__le32 *bdl;

	ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;

	/* Allocate cl ops */
	ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
	ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
	ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
	ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
	ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
	ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
	ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
	ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;

	/* Allocate buffer*/
	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
			&ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
	if (ret < 0) {
		dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret);
		return ret;
	}
	/* Setup Code loader BDL */
	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
			&ctx->cl_dev.dmab_bdl, PAGE_SIZE);
	if (ret < 0) {
		dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret);
		ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
		return ret;
	}
	bdl = (__le32 *)ctx->cl_dev.dmab_bdl.area;

	/* Allocate BDLs */
	ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
			&bdl, ctx->cl_dev.bufsize, 1);
	ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
			ctx->cl_dev.bufsize, ctx->cl_dev.frags);

	ctx->cl_dev.curr_spib_pos = 0;
	ctx->cl_dev.dma_buffer_offset = 0;
	init_waitqueue_head(&ctx->cl_dev.wait_queue);

	return ret;
}