summaryrefslogtreecommitdiffstats
path: root/net/sunrpc/xprtrdma/fmr_ops.c
blob: 6326ebe8b5951a95c3e488bee905f6fa6f00a62b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
 * Copyright (c) 2015 Oracle.  All rights reserved.
 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
 */

/* Lightweight memory registration using Fast Memory Regions (FMR).
 * Referred to sometimes as MTHCAFMR mode.
 *
 * FMR uses synchronous memory registration and deregistration.
 * FMR registration is known to be fast, but FMR deregistration
 * can take tens of usecs to complete.
 */

/* Normal operation
 *
 * A Memory Region is prepared for RDMA READ or WRITE using the
 * ib_map_phys_fmr verb (fmr_op_map). When the RDMA operation is
 * finished, the Memory Region is unmapped using the ib_unmap_fmr
 * verb (fmr_op_unmap).
 */

/* Transport recovery
 *
 * After a transport reconnect, fmr_op_map re-uses the MR already
 * allocated for the RPC, but generates a fresh rkey then maps the
 * MR again. This process is synchronous.
 */

#include "xprt_rdma.h"

#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY	RPCDBG_TRANS
#endif

/* Maximum scatter/gather per FMR */
#define RPCRDMA_MAX_FMR_SGES	(64)

static struct workqueue_struct *fmr_recovery_wq;

#define FMR_RECOVERY_WQ_FLAGS		(WQ_UNBOUND)

int
fmr_alloc_recovery_wq(void)
{
	fmr_recovery_wq = alloc_workqueue("fmr_recovery", WQ_UNBOUND, 0);
	return !fmr_recovery_wq ? -ENOMEM : 0;
}

void
fmr_destroy_recovery_wq(void)
{
	struct workqueue_struct *wq;

	if (!fmr_recovery_wq)
		return;

	wq = fmr_recovery_wq;
	fmr_recovery_wq = NULL;
	destroy_workqueue(wq);
}

static int
__fmr_unmap(struct rpcrdma_mw *mw)
{
	LIST_HEAD(l);

	list_add(&mw->fmr.fmr->list, &l);
	return ib_unmap_fmr(&l);
}

/* Deferred reset of a single FMR. Generate a fresh rkey by
 * replacing the MR. There's no recovery if this fails.
 */
static void
__fmr_recovery_worker(struct work_struct *work)
{
	struct rpcrdma_mw *mw = container_of(work, struct rpcrdma_mw,
					    mw_work);
	struct rpcrdma_xprt *r_xprt = mw->mw_xprt;

	__fmr_unmap(mw);
	rpcrdma_put_mw(r_xprt, mw);
	return;
}

/* A broken MR was discovered in a context that can't sleep.
 * Defer recovery to the recovery worker.
 */
static void
__fmr_queue_recovery(struct rpcrdma_mw *mw)
{
	INIT_WORK(&mw->mw_work, __fmr_recovery_worker);
	queue_work(fmr_recovery_wq, &mw->mw_work);
}

static int
fmr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
	    struct rpcrdma_create_data_internal *cdata)
{
	rpcrdma_set_max_header_sizes(ia, cdata, max_t(unsigned int, 1,
						      RPCRDMA_MAX_DATA_SEGS /
						      RPCRDMA_MAX_FMR_SGES));
	return 0;
}

/* FMR mode conveys up to 64 pages of payload per chunk segment.
 */
static size_t
fmr_op_maxpages(struct rpcrdma_xprt *r_xprt)
{
	return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
		     RPCRDMA_MAX_HDR_SEGS * RPCRDMA_MAX_FMR_SGES);
}

static int
fmr_op_init(struct rpcrdma_xprt *r_xprt)
{
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
	int mr_access_flags = IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ;
	struct ib_fmr_attr fmr_attr = {
		.max_pages	= RPCRDMA_MAX_FMR_SGES,
		.max_maps	= 1,
		.page_shift	= PAGE_SHIFT
	};
	struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
	struct rpcrdma_mw *r;
	int i, rc;

	spin_lock_init(&buf->rb_mwlock);
	INIT_LIST_HEAD(&buf->rb_mws);
	INIT_LIST_HEAD(&buf->rb_all);

	i = max_t(int, RPCRDMA_MAX_DATA_SEGS / RPCRDMA_MAX_FMR_SGES, 1);
	i += 2;				/* head + tail */
	i *= buf->rb_max_requests;	/* one set for each RPC slot */
	dprintk("RPC:       %s: initalizing %d FMRs\n", __func__, i);

	rc = -ENOMEM;
	while (i--) {
		r = kzalloc(sizeof(*r), GFP_KERNEL);
		if (!r)
			goto out;

		r->fmr.physaddrs = kmalloc(RPCRDMA_MAX_FMR_SGES *
					   sizeof(u64), GFP_KERNEL);
		if (!r->fmr.physaddrs)
			goto out_free;

		r->fmr.fmr = ib_alloc_fmr(pd, mr_access_flags, &fmr_attr);
		if (IS_ERR(r->fmr.fmr))
			goto out_fmr_err;

		r->mw_xprt = r_xprt;
		list_add(&r->mw_list, &buf->rb_mws);
		list_add(&r->mw_all, &buf->rb_all);
	}
	return 0;

out_fmr_err:
	rc = PTR_ERR(r->fmr.fmr);
	dprintk("RPC:       %s: ib_alloc_fmr status %i\n", __func__, rc);
	kfree(r->fmr.physaddrs);
out_free:
	kfree(r);
out:
	return rc;
}

/* Use the ib_map_phys_fmr() verb to register a memory region
 * for remote access via RDMA READ or RDMA WRITE.
 */
static int
fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
	   int nsegs, bool writing)
{
	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
	struct ib_device *device = ia->ri_device;
	enum dma_data_direction direction = rpcrdma_data_dir(writing);
	struct rpcrdma_mr_seg *seg1 = seg;
	int len, pageoff, i, rc;
	struct rpcrdma_mw *mw;

	mw = seg1->rl_mw;
	seg1->rl_mw = NULL;
	if (!mw) {
		mw = rpcrdma_get_mw(r_xprt);
		if (!mw)
			return -ENOMEM;
	} else {
		/* this is a retransmit; generate a fresh rkey */
		rc = __fmr_unmap(mw);
		if (rc)
			return rc;
	}

	pageoff = offset_in_page(seg1->mr_offset);
	seg1->mr_offset -= pageoff;	/* start of page */
	seg1->mr_len += pageoff;
	len = -pageoff;
	if (nsegs > RPCRDMA_MAX_FMR_SGES)
		nsegs = RPCRDMA_MAX_FMR_SGES;
	for (i = 0; i < nsegs;) {
		rpcrdma_map_one(device, seg, direction);
		mw->fmr.physaddrs[i] = seg->mr_dma;
		len += seg->mr_len;
		++seg;
		++i;
		/* Check for holes */
		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
			break;
	}

	rc = ib_map_phys_fmr(mw->fmr.fmr, mw->fmr.physaddrs,
			     i, seg1->mr_dma);
	if (rc)
		goto out_maperr;

	seg1->rl_mw = mw;
	seg1->mr_rkey = mw->fmr.fmr->rkey;
	seg1->mr_base = seg1->mr_dma + pageoff;
	seg1->mr_nsegs = i;
	seg1->mr_len = len;
	return i;

out_maperr:
	dprintk("RPC:       %s: ib_map_phys_fmr %u@0x%llx+%i (%d) status %i\n",
		__func__, len, (unsigned long long)seg1->mr_dma,
		pageoff, i, rc);
	while (i--)
		rpcrdma_unmap_one(device, --seg);
	return rc;
}

static void
__fmr_dma_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg)
{
	struct ib_device *device = r_xprt->rx_ia.ri_device;
	int nsegs = seg->mr_nsegs;

	while (nsegs--)
		rpcrdma_unmap_one(device, seg++);
}

/* Invalidate all memory regions that were registered for "req".
 *
 * Sleeps until it is safe for the host CPU to access the
 * previously mapped memory regions.
 */
static void
fmr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
{
	struct rpcrdma_mr_seg *seg;
	unsigned int i, nchunks;
	struct rpcrdma_mw *mw;
	LIST_HEAD(unmap_list);
	int rc;

	dprintk("RPC:       %s: req %p\n", __func__, req);

	/* ORDER: Invalidate all of the req's MRs first
	 *
	 * ib_unmap_fmr() is slow, so use a single call instead
	 * of one call per mapped MR.
	 */
	for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
		seg = &req->rl_segments[i];
		mw = seg->rl_mw;

		list_add(&mw->fmr.fmr->list, &unmap_list);

		i += seg->mr_nsegs;
	}
	rc = ib_unmap_fmr(&unmap_list);
	if (rc)
		pr_warn("%s: ib_unmap_fmr failed (%i)\n", __func__, rc);

	/* ORDER: Now DMA unmap all of the req's MRs, and return
	 * them to the free MW list.
	 */
	for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
		seg = &req->rl_segments[i];

		__fmr_dma_unmap(r_xprt, seg);
		rpcrdma_put_mw(r_xprt, seg->rl_mw);

		i += seg->mr_nsegs;
		seg->mr_nsegs = 0;
		seg->rl_mw = NULL;
	}

	req->rl_nchunks = 0;
}

/* Use a slow, safe mechanism to invalidate all memory regions
 * that were registered for "req".
 *
 * In the asynchronous case, DMA unmapping occurs first here
 * because the rpcrdma_mr_seg is released immediately after this
 * call. It's contents won't be available in __fmr_dma_unmap later.
 * FIXME.
 */
static void
fmr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
		  bool sync)
{
	struct rpcrdma_mr_seg *seg;
	struct rpcrdma_mw *mw;
	unsigned int i;

	for (i = 0; req->rl_nchunks; req->rl_nchunks--) {
		seg = &req->rl_segments[i];
		mw = seg->rl_mw;

		if (sync) {
			/* ORDER */
			__fmr_unmap(mw);
			__fmr_dma_unmap(r_xprt, seg);
			rpcrdma_put_mw(r_xprt, mw);
		} else {
			__fmr_dma_unmap(r_xprt, seg);
			__fmr_queue_recovery(mw);
		}

		i += seg->mr_nsegs;
		seg->mr_nsegs = 0;
		seg->rl_mw = NULL;
	}
}

static void
fmr_op_destroy(struct rpcrdma_buffer *buf)
{
	struct rpcrdma_mw *r;
	int rc;

	while (!list_empty(&buf->rb_all)) {
		r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
		list_del(&r->mw_all);
		kfree(r->fmr.physaddrs);

		rc = ib_dealloc_fmr(r->fmr.fmr);
		if (rc)
			dprintk("RPC:       %s: ib_dealloc_fmr failed %i\n",
				__func__, rc);

		kfree(r);
	}
}

const struct rpcrdma_memreg_ops rpcrdma_fmr_memreg_ops = {
	.ro_map				= fmr_op_map,
	.ro_unmap_sync			= fmr_op_unmap_sync,
	.ro_unmap_safe			= fmr_op_unmap_safe,
	.ro_open			= fmr_op_open,
	.ro_maxpages			= fmr_op_maxpages,
	.ro_init			= fmr_op_init,
	.ro_destroy			= fmr_op_destroy,
	.ro_displayname			= "fmr",
};