summaryrefslogtreecommitdiffstats
path: root/net/sched/sch_sfq.c
blob: b46e0121dd1ac7cda3d330f997efdda3793be82e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/*
 * net/sched/sch_sfq.c	Stochastic Fairness Queueing discipline.
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/jhash.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/red.h>


/*	Stochastic Fairness Queuing algorithm.
	=======================================

	Source:
	Paul E. McKenney "Stochastic Fairness Queuing",
	IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.

	Paul E. McKenney "Stochastic Fairness Queuing",
	"Interworking: Research and Experience", v.2, 1991, p.113-131.


	See also:
	M. Shreedhar and George Varghese "Efficient Fair
	Queuing using Deficit Round Robin", Proc. SIGCOMM 95.


	This is not the thing that is usually called (W)FQ nowadays.
	It does not use any timestamp mechanism, but instead
	processes queues in round-robin order.

	ADVANTAGE:

	- It is very cheap. Both CPU and memory requirements are minimal.

	DRAWBACKS:

	- "Stochastic" -> It is not 100% fair.
	When hash collisions occur, several flows are considered as one.

	- "Round-robin" -> It introduces larger delays than virtual clock
	based schemes, and should not be used for isolating interactive
	traffic	from non-interactive. It means, that this scheduler
	should be used as leaf of CBQ or P3, which put interactive traffic
	to higher priority band.

	We still need true WFQ for top level CSZ, but using WFQ
	for the best effort traffic is absolutely pointless:
	SFQ is superior for this purpose.

	IMPLEMENTATION:
	This implementation limits :
	- maximal queue length per flow to 127 packets.
	- max mtu to 2^18-1;
	- max 65408 flows,
	- number of hash buckets to 65536.

	It is easy to increase these values, but not in flight.  */

#define SFQ_MAX_DEPTH		127 /* max number of packets per flow */
#define SFQ_DEFAULT_FLOWS	128
#define SFQ_MAX_FLOWS		(0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
#define SFQ_EMPTY_SLOT		0xffff
#define SFQ_DEFAULT_HASH_DIVISOR 1024

/* We use 16 bits to store allot, and want to handle packets up to 64K
 * Scale allot by 8 (1<<3) so that no overflow occurs.
 */
#define SFQ_ALLOT_SHIFT		3
#define SFQ_ALLOT_SIZE(X)	DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)

/* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
typedef u16 sfq_index;

/*
 * We dont use pointers to save space.
 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
 * are 'pointers' to dep[] array
 */
struct sfq_head {
	sfq_index	next;
	sfq_index	prev;
};

struct sfq_slot {
	struct sk_buff	*skblist_next;
	struct sk_buff	*skblist_prev;
	sfq_index	qlen; /* number of skbs in skblist */
	sfq_index	next; /* next slot in sfq RR chain */
	struct sfq_head dep; /* anchor in dep[] chains */
	unsigned short	hash; /* hash value (index in ht[]) */
	short		allot; /* credit for this slot */

	unsigned int    backlog;
	struct red_vars vars;
};

struct sfq_sched_data {
/* frequently used fields */
	int		limit;		/* limit of total number of packets in this qdisc */
	unsigned int	divisor;	/* number of slots in hash table */
	u8		headdrop;
	u8		maxdepth;	/* limit of packets per flow */

	u32		perturbation;
	u8		cur_depth;	/* depth of longest slot */
	u8		flags;
	unsigned short  scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
	struct tcf_proto __rcu *filter_list;
	struct tcf_block *block;
	sfq_index	*ht;		/* Hash table ('divisor' slots) */
	struct sfq_slot	*slots;		/* Flows table ('maxflows' entries) */

	struct red_parms *red_parms;
	struct tc_sfqred_stats stats;
	struct sfq_slot *tail;		/* current slot in round */

	struct sfq_head	dep[SFQ_MAX_DEPTH + 1];
					/* Linked lists of slots, indexed by depth
					 * dep[0] : list of unused flows
					 * dep[1] : list of flows with 1 packet
					 * dep[X] : list of flows with X packets
					 */

	unsigned int	maxflows;	/* number of flows in flows array */
	int		perturb_period;
	unsigned int	quantum;	/* Allotment per round: MUST BE >= MTU */
	struct timer_list perturb_timer;
};

/*
 * sfq_head are either in a sfq_slot or in dep[] array
 */
static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
{
	if (val < SFQ_MAX_FLOWS)
		return &q->slots[val].dep;
	return &q->dep[val - SFQ_MAX_FLOWS];
}

static unsigned int sfq_hash(const struct sfq_sched_data *q,
			     const struct sk_buff *skb)
{
	return skb_get_hash_perturb(skb, q->perturbation) & (q->divisor - 1);
}

static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
				 int *qerr)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	struct tcf_result res;
	struct tcf_proto *fl;
	int result;

	if (TC_H_MAJ(skb->priority) == sch->handle &&
	    TC_H_MIN(skb->priority) > 0 &&
	    TC_H_MIN(skb->priority) <= q->divisor)
		return TC_H_MIN(skb->priority);

	fl = rcu_dereference_bh(q->filter_list);
	if (!fl)
		return sfq_hash(q, skb) + 1;

	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
	result = tcf_classify(skb, fl, &res, false);
	if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
		switch (result) {
		case TC_ACT_STOLEN:
		case TC_ACT_QUEUED:
		case TC_ACT_TRAP:
			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
		case TC_ACT_SHOT:
			return 0;
		}
#endif
		if (TC_H_MIN(res.classid) <= q->divisor)
			return TC_H_MIN(res.classid);
	}
	return 0;
}

/*
 * x : slot number [0 .. SFQ_MAX_FLOWS - 1]
 */
static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
{
	sfq_index p, n;
	struct sfq_slot *slot = &q->slots[x];
	int qlen = slot->qlen;

	p = qlen + SFQ_MAX_FLOWS;
	n = q->dep[qlen].next;

	slot->dep.next = n;
	slot->dep.prev = p;

	q->dep[qlen].next = x;		/* sfq_dep_head(q, p)->next = x */
	sfq_dep_head(q, n)->prev = x;
}

#define sfq_unlink(q, x, n, p)			\
	do {					\
		n = q->slots[x].dep.next;	\
		p = q->slots[x].dep.prev;	\
		sfq_dep_head(q, p)->next = n;	\
		sfq_dep_head(q, n)->prev = p;	\
	} while (0)


static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
{
	sfq_index p, n;
	int d;

	sfq_unlink(q, x, n, p);

	d = q->slots[x].qlen--;
	if (n == p && q->cur_depth == d)
		q->cur_depth--;
	sfq_link(q, x);
}

static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
{
	sfq_index p, n;
	int d;

	sfq_unlink(q, x, n, p);

	d = ++q->slots[x].qlen;
	if (q->cur_depth < d)
		q->cur_depth = d;
	sfq_link(q, x);
}

/* helper functions : might be changed when/if skb use a standard list_head */

/* remove one skb from tail of slot queue */
static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
{
	struct sk_buff *skb = slot->skblist_prev;

	slot->skblist_prev = skb->prev;
	skb->prev->next = (struct sk_buff *)slot;
	skb->next = skb->prev = NULL;
	return skb;
}

/* remove one skb from head of slot queue */
static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
{
	struct sk_buff *skb = slot->skblist_next;

	slot->skblist_next = skb->next;
	skb->next->prev = (struct sk_buff *)slot;
	skb->next = skb->prev = NULL;
	return skb;
}

static inline void slot_queue_init(struct sfq_slot *slot)
{
	memset(slot, 0, sizeof(*slot));
	slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
}

/* add skb to slot queue (tail add) */
static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
{
	skb->prev = slot->skblist_prev;
	skb->next = (struct sk_buff *)slot;
	slot->skblist_prev->next = skb;
	slot->skblist_prev = skb;
}

static unsigned int sfq_drop(struct Qdisc *sch)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	sfq_index x, d = q->cur_depth;
	struct sk_buff *skb;
	unsigned int len;
	struct sfq_slot *slot;

	/* Queue is full! Find the longest slot and drop tail packet from it */
	if (d > 1) {
		x = q->dep[d].next;
		slot = &q->slots[x];
drop:
		skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
		len = qdisc_pkt_len(skb);
		slot->backlog -= len;
		sfq_dec(q, x);
		sch->q.qlen--;
		qdisc_qstats_drop(sch);
		qdisc_qstats_backlog_dec(sch, skb);
		kfree_skb(skb);
		return len;
	}

	if (d == 1) {
		/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
		x = q->tail->next;
		slot = &q->slots[x];
		q->tail->next = slot->next;
		q->ht[slot->hash] = SFQ_EMPTY_SLOT;
		goto drop;
	}

	return 0;
}

/* Is ECN parameter configured */
static int sfq_prob_mark(const struct sfq_sched_data *q)
{
	return q->flags & TC_RED_ECN;
}

/* Should packets over max threshold just be marked */
static int sfq_hard_mark(const struct sfq_sched_data *q)
{
	return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
}

static int sfq_headdrop(const struct sfq_sched_data *q)
{
	return q->headdrop;
}

static int
sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	unsigned int hash, dropped;
	sfq_index x, qlen;
	struct sfq_slot *slot;
	int uninitialized_var(ret);
	struct sk_buff *head;
	int delta;

	hash = sfq_classify(skb, sch, &ret);
	if (hash == 0) {
		if (ret & __NET_XMIT_BYPASS)
			qdisc_qstats_drop(sch);
		kfree_skb(skb);
		return ret;
	}
	hash--;

	x = q->ht[hash];
	slot = &q->slots[x];
	if (x == SFQ_EMPTY_SLOT) {
		x = q->dep[0].next; /* get a free slot */
		if (x >= SFQ_MAX_FLOWS)
			return qdisc_drop(skb, sch, to_free);
		q->ht[hash] = x;
		slot = &q->slots[x];
		slot->hash = hash;
		slot->backlog = 0; /* should already be 0 anyway... */
		red_set_vars(&slot->vars);
		goto enqueue;
	}
	if (q->red_parms) {
		slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
							&slot->vars,
							slot->backlog);
		switch (red_action(q->red_parms,
				   &slot->vars,
				   slot->vars.qavg)) {
		case RED_DONT_MARK:
			break;

		case RED_PROB_MARK:
			qdisc_qstats_overlimit(sch);
			if (sfq_prob_mark(q)) {
				/* We know we have at least one packet in queue */
				if (sfq_headdrop(q) &&
				    INET_ECN_set_ce(slot->skblist_next)) {
					q->stats.prob_mark_head++;
					break;
				}
				if (INET_ECN_set_ce(skb)) {
					q->stats.prob_mark++;
					break;
				}
			}
			q->stats.prob_drop++;
			goto congestion_drop;

		case RED_HARD_MARK:
			qdisc_qstats_overlimit(sch);
			if (sfq_hard_mark(q)) {
				/* We know we have at least one packet in queue */
				if (sfq_headdrop(q) &&
				    INET_ECN_set_ce(slot->skblist_next)) {
					q->stats.forced_mark_head++;
					break;
				}
				if (INET_ECN_set_ce(skb)) {
					q->stats.forced_mark++;
					break;
				}
			}
			q->stats.forced_drop++;
			goto congestion_drop;
		}
	}

	if (slot->qlen >= q->maxdepth) {
congestion_drop:
		if (!sfq_headdrop(q))
			return qdisc_drop(skb, sch, to_free);

		/* We know we have at least one packet in queue */
		head = slot_dequeue_head(slot);
		delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
		sch->qstats.backlog -= delta;
		slot->backlog -= delta;
		qdisc_drop(head, sch, to_free);

		slot_queue_add(slot, skb);
		qdisc_tree_reduce_backlog(sch, 0, delta);
		return NET_XMIT_CN;
	}

enqueue:
	qdisc_qstats_backlog_inc(sch, skb);
	slot->backlog += qdisc_pkt_len(skb);
	slot_queue_add(slot, skb);
	sfq_inc(q, x);
	if (slot->qlen == 1) {		/* The flow is new */
		if (q->tail == NULL) {	/* It is the first flow */
			slot->next = x;
		} else {
			slot->next = q->tail->next;
			q->tail->next = x;
		}
		/* We put this flow at the end of our flow list.
		 * This might sound unfair for a new flow to wait after old ones,
		 * but we could endup servicing new flows only, and freeze old ones.
		 */
		q->tail = slot;
		/* We could use a bigger initial quantum for new flows */
		slot->allot = q->scaled_quantum;
	}
	if (++sch->q.qlen <= q->limit)
		return NET_XMIT_SUCCESS;

	qlen = slot->qlen;
	dropped = sfq_drop(sch);
	/* Return Congestion Notification only if we dropped a packet
	 * from this flow.
	 */
	if (qlen != slot->qlen) {
		qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb));
		return NET_XMIT_CN;
	}

	/* As we dropped a packet, better let upper stack know this */
	qdisc_tree_reduce_backlog(sch, 1, dropped);
	return NET_XMIT_SUCCESS;
}

static struct sk_buff *
sfq_dequeue(struct Qdisc *sch)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	struct sk_buff *skb;
	sfq_index a, next_a;
	struct sfq_slot *slot;

	/* No active slots */
	if (q->tail == NULL)
		return NULL;

next_slot:
	a = q->tail->next;
	slot = &q->slots[a];
	if (slot->allot <= 0) {
		q->tail = slot;
		slot->allot += q->scaled_quantum;
		goto next_slot;
	}
	skb = slot_dequeue_head(slot);
	sfq_dec(q, a);
	qdisc_bstats_update(sch, skb);
	sch->q.qlen--;
	qdisc_qstats_backlog_dec(sch, skb);
	slot->backlog -= qdisc_pkt_len(skb);
	/* Is the slot empty? */
	if (slot->qlen == 0) {
		q->ht[slot->hash] = SFQ_EMPTY_SLOT;
		next_a = slot->next;
		if (a == next_a) {
			q->tail = NULL; /* no more active slots */
			return skb;
		}
		q->tail->next = next_a;
	} else {
		slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
	}
	return skb;
}

static void
sfq_reset(struct Qdisc *sch)
{
	struct sk_buff *skb;

	while ((skb = sfq_dequeue(sch)) != NULL)
		rtnl_kfree_skbs(skb, skb);
}

/*
 * When q->perturbation is changed, we rehash all queued skbs
 * to avoid OOO (Out Of Order) effects.
 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
 * counters.
 */
static void sfq_rehash(struct Qdisc *sch)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	struct sk_buff *skb;
	int i;
	struct sfq_slot *slot;
	struct sk_buff_head list;
	int dropped = 0;
	unsigned int drop_len = 0;

	__skb_queue_head_init(&list);

	for (i = 0; i < q->maxflows; i++) {
		slot = &q->slots[i];
		if (!slot->qlen)
			continue;
		while (slot->qlen) {
			skb = slot_dequeue_head(slot);
			sfq_dec(q, i);
			__skb_queue_tail(&list, skb);
		}
		slot->backlog = 0;
		red_set_vars(&slot->vars);
		q->ht[slot->hash] = SFQ_EMPTY_SLOT;
	}
	q->tail = NULL;

	while ((skb = __skb_dequeue(&list)) != NULL) {
		unsigned int hash = sfq_hash(q, skb);
		sfq_index x = q->ht[hash];

		slot = &q->slots[x];
		if (x == SFQ_EMPTY_SLOT) {
			x = q->dep[0].next; /* get a free slot */
			if (x >= SFQ_MAX_FLOWS) {
drop:
				qdisc_qstats_backlog_dec(sch, skb);
				drop_len += qdisc_pkt_len(skb);
				kfree_skb(skb);
				dropped++;
				continue;
			}
			q->ht[hash] = x;
			slot = &q->slots[x];
			slot->hash = hash;
		}
		if (slot->qlen >= q->maxdepth)
			goto drop;
		slot_queue_add(slot, skb);
		if (q->red_parms)
			slot->vars.qavg = red_calc_qavg(q->red_parms,
							&slot->vars,
							slot->backlog);
		slot->backlog += qdisc_pkt_len(skb);
		sfq_inc(q, x);
		if (slot->qlen == 1) {		/* The flow is new */
			if (q->tail == NULL) {	/* It is the first flow */
				slot->next = x;
			} else {
				slot->next = q->tail->next;
				q->tail->next = x;
			}
			q->tail = slot;
			slot->allot = q->scaled_quantum;
		}
	}
	sch->q.qlen -= dropped;
	qdisc_tree_reduce_backlog(sch, dropped, drop_len);
}

static void sfq_perturbation(unsigned long arg)
{
	struct Qdisc *sch = (struct Qdisc *)arg;
	struct sfq_sched_data *q = qdisc_priv(sch);
	spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));

	spin_lock(root_lock);
	q->perturbation = prandom_u32();
	if (!q->filter_list && q->tail)
		sfq_rehash(sch);
	spin_unlock(root_lock);

	if (q->perturb_period)
		mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
}

static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	struct tc_sfq_qopt *ctl = nla_data(opt);
	struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
	unsigned int qlen, dropped = 0;
	struct red_parms *p = NULL;

	if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
		return -EINVAL;
	if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
		ctl_v1 = nla_data(opt);
	if (ctl->divisor &&
	    (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
		return -EINVAL;
	if (ctl_v1 && ctl_v1->qth_min) {
		p = kmalloc(sizeof(*p), GFP_KERNEL);
		if (!p)
			return -ENOMEM;
	}
	sch_tree_lock(sch);
	if (ctl->quantum) {
		q->quantum = ctl->quantum;
		q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
	}
	q->perturb_period = ctl->perturb_period * HZ;
	if (ctl->flows)
		q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
	if (ctl->divisor) {
		q->divisor = ctl->divisor;
		q->maxflows = min_t(u32, q->maxflows, q->divisor);
	}
	if (ctl_v1) {
		if (ctl_v1->depth)
			q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
		if (p) {
			swap(q->red_parms, p);
			red_set_parms(q->red_parms,
				      ctl_v1->qth_min, ctl_v1->qth_max,
				      ctl_v1->Wlog,
				      ctl_v1->Plog, ctl_v1->Scell_log,
				      NULL,
				      ctl_v1->max_P);
		}
		q->flags = ctl_v1->flags;
		q->headdrop = ctl_v1->headdrop;
	}
	if (ctl->limit) {
		q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
		q->maxflows = min_t(u32, q->maxflows, q->limit);
	}

	qlen = sch->q.qlen;
	while (sch->q.qlen > q->limit)
		dropped += sfq_drop(sch);
	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);

	del_timer(&q->perturb_timer);
	if (q->perturb_period) {
		mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
		q->perturbation = prandom_u32();
	}
	sch_tree_unlock(sch);
	kfree(p);
	return 0;
}

static void *sfq_alloc(size_t sz)
{
	return  kvmalloc(sz, GFP_KERNEL);
}

static void sfq_free(void *addr)
{
	kvfree(addr);
}

static void sfq_destroy(struct Qdisc *sch)
{
	struct sfq_sched_data *q = qdisc_priv(sch);

	tcf_block_put(q->block);
	q->perturb_period = 0;
	del_timer_sync(&q->perturb_timer);
	sfq_free(q->ht);
	sfq_free(q->slots);
	kfree(q->red_parms);
}

static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	int i;
	int err;

	err = tcf_block_get(&q->block, &q->filter_list);
	if (err)
		return err;

	setup_deferrable_timer(&q->perturb_timer, sfq_perturbation,
			       (unsigned long)sch);

	for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
		q->dep[i].next = i + SFQ_MAX_FLOWS;
		q->dep[i].prev = i + SFQ_MAX_FLOWS;
	}

	q->limit = SFQ_MAX_DEPTH;
	q->maxdepth = SFQ_MAX_DEPTH;
	q->cur_depth = 0;
	q->tail = NULL;
	q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
	q->maxflows = SFQ_DEFAULT_FLOWS;
	q->quantum = psched_mtu(qdisc_dev(sch));
	q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
	q->perturb_period = 0;
	q->perturbation = prandom_u32();

	if (opt) {
		int err = sfq_change(sch, opt);
		if (err)
			return err;
	}

	q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
	q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
	if (!q->ht || !q->slots) {
		/* Note: sfq_destroy() will be called by our caller */
		return -ENOMEM;
	}

	for (i = 0; i < q->divisor; i++)
		q->ht[i] = SFQ_EMPTY_SLOT;

	for (i = 0; i < q->maxflows; i++) {
		slot_queue_init(&q->slots[i]);
		sfq_link(q, i);
	}
	if (q->limit >= 1)
		sch->flags |= TCQ_F_CAN_BYPASS;
	else
		sch->flags &= ~TCQ_F_CAN_BYPASS;
	return 0;
}

static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	unsigned char *b = skb_tail_pointer(skb);
	struct tc_sfq_qopt_v1 opt;
	struct red_parms *p = q->red_parms;

	memset(&opt, 0, sizeof(opt));
	opt.v0.quantum	= q->quantum;
	opt.v0.perturb_period = q->perturb_period / HZ;
	opt.v0.limit	= q->limit;
	opt.v0.divisor	= q->divisor;
	opt.v0.flows	= q->maxflows;
	opt.depth	= q->maxdepth;
	opt.headdrop	= q->headdrop;

	if (p) {
		opt.qth_min	= p->qth_min >> p->Wlog;
		opt.qth_max	= p->qth_max >> p->Wlog;
		opt.Wlog	= p->Wlog;
		opt.Plog	= p->Plog;
		opt.Scell_log	= p->Scell_log;
		opt.max_P	= p->max_P;
	}
	memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
	opt.flags	= q->flags;

	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
		goto nla_put_failure;

	return skb->len;

nla_put_failure:
	nlmsg_trim(skb, b);
	return -1;
}

static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
{
	return NULL;
}

static unsigned long sfq_find(struct Qdisc *sch, u32 classid)
{
	return 0;
}

static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
			      u32 classid)
{
	/* we cannot bypass queue discipline anymore */
	sch->flags &= ~TCQ_F_CAN_BYPASS;
	return 0;
}

static void sfq_unbind(struct Qdisc *q, unsigned long cl)
{
}

static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl)
{
	struct sfq_sched_data *q = qdisc_priv(sch);

	if (cl)
		return NULL;
	return q->block;
}

static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
			  struct sk_buff *skb, struct tcmsg *tcm)
{
	tcm->tcm_handle |= TC_H_MIN(cl);
	return 0;
}

static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
				struct gnet_dump *d)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	sfq_index idx = q->ht[cl - 1];
	struct gnet_stats_queue qs = { 0 };
	struct tc_sfq_xstats xstats = { 0 };

	if (idx != SFQ_EMPTY_SLOT) {
		const struct sfq_slot *slot = &q->slots[idx];

		xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
		qs.qlen = slot->qlen;
		qs.backlog = slot->backlog;
	}
	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
		return -1;
	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
}

static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
	struct sfq_sched_data *q = qdisc_priv(sch);
	unsigned int i;

	if (arg->stop)
		return;

	for (i = 0; i < q->divisor; i++) {
		if (q->ht[i] == SFQ_EMPTY_SLOT ||
		    arg->count < arg->skip) {
			arg->count++;
			continue;
		}
		if (arg->fn(sch, i + 1, arg) < 0) {
			arg->stop = 1;
			break;
		}
		arg->count++;
	}
}

static const struct Qdisc_class_ops sfq_class_ops = {
	.leaf		=	sfq_leaf,
	.find		=	sfq_find,
	.tcf_block	=	sfq_tcf_block,
	.bind_tcf	=	sfq_bind,
	.unbind_tcf	=	sfq_unbind,
	.dump		=	sfq_dump_class,
	.dump_stats	=	sfq_dump_class_stats,
	.walk		=	sfq_walk,
};

static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
	.cl_ops		=	&sfq_class_ops,
	.id		=	"sfq",
	.priv_size	=	sizeof(struct sfq_sched_data),
	.enqueue	=	sfq_enqueue,
	.dequeue	=	sfq_dequeue,
	.peek		=	qdisc_peek_dequeued,
	.init		=	sfq_init,
	.reset		=	sfq_reset,
	.destroy	=	sfq_destroy,
	.change		=	NULL,
	.dump		=	sfq_dump,
	.owner		=	THIS_MODULE,
};

static int __init sfq_module_init(void)
{
	return register_qdisc(&sfq_qdisc_ops);
}
static void __exit sfq_module_exit(void)
{
	unregister_qdisc(&sfq_qdisc_ops);
}
module_init(sfq_module_init)
module_exit(sfq_module_exit)
MODULE_LICENSE("GPL");