summaryrefslogtreecommitdiffstats
path: root/lib/random32.c
blob: 27adb753180f3b5438d65de23157a265e9e12b4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
  This is a maximally equidistributed combined Tausworthe generator
  based on code from GNU Scientific Library 1.5 (30 Jun 2004)

  lfsr113 version:

   x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)

   s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
   s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
   s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
   s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))

   The period of this generator is about 2^113 (see erratum paper).

   From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
   Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
   http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
   ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps

   There is an erratum in the paper "Tables of Maximally
   Equidistributed Combined LFSR Generators", Mathematics of
   Computation, 68, 225 (1999), 261--269:
   http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps

        ... the k_j most significant bits of z_j must be non-
        zero, for each j. (Note: this restriction also applies to the
        computer code given in [4], but was mistakenly not mentioned in
        that paper.)

   This affects the seeding procedure by imposing the requirement
   s1 > 1, s2 > 7, s3 > 15, s4 > 127.

*/

#include <linux/types.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/jiffies.h>
#include <linux/random.h>

static DEFINE_PER_CPU(struct rnd_state, net_rand_state);

/**
 *	prandom_u32_state - seeded pseudo-random number generator.
 *	@state: pointer to state structure holding seeded state.
 *
 *	This is used for pseudo-randomness with no outside seeding.
 *	For more random results, use prandom_u32().
 */
u32 prandom_u32_state(struct rnd_state *state)
{
#define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)

	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);

	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
}
EXPORT_SYMBOL(prandom_u32_state);

/**
 *	prandom_u32 - pseudo random number generator
 *
 *	A 32 bit pseudo-random number is generated using a fast
 *	algorithm suitable for simulation. This algorithm is NOT
 *	considered safe for cryptographic use.
 */
u32 prandom_u32(void)
{
	unsigned long r;
	struct rnd_state *state = &get_cpu_var(net_rand_state);
	r = prandom_u32_state(state);
	put_cpu_var(state);
	return r;
}
EXPORT_SYMBOL(prandom_u32);

/*
 *	prandom_bytes_state - get the requested number of pseudo-random bytes
 *
 *	@state: pointer to state structure holding seeded state.
 *	@buf: where to copy the pseudo-random bytes to
 *	@bytes: the requested number of bytes
 *
 *	This is used for pseudo-randomness with no outside seeding.
 *	For more random results, use prandom_bytes().
 */
void prandom_bytes_state(struct rnd_state *state, void *buf, int bytes)
{
	unsigned char *p = buf;
	int i;

	for (i = 0; i < round_down(bytes, sizeof(u32)); i += sizeof(u32)) {
		u32 random = prandom_u32_state(state);
		int j;

		for (j = 0; j < sizeof(u32); j++) {
			p[i + j] = random;
			random >>= BITS_PER_BYTE;
		}
	}
	if (i < bytes) {
		u32 random = prandom_u32_state(state);

		for (; i < bytes; i++) {
			p[i] = random;
			random >>= BITS_PER_BYTE;
		}
	}
}
EXPORT_SYMBOL(prandom_bytes_state);

/**
 *	prandom_bytes - get the requested number of pseudo-random bytes
 *	@buf: where to copy the pseudo-random bytes to
 *	@bytes: the requested number of bytes
 */
void prandom_bytes(void *buf, int bytes)
{
	struct rnd_state *state = &get_cpu_var(net_rand_state);

	prandom_bytes_state(state, buf, bytes);
	put_cpu_var(state);
}
EXPORT_SYMBOL(prandom_bytes);

static void prandom_warmup(struct rnd_state *state)
{
	/* Calling RNG ten times to satify recurrence condition */
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
}

/**
 *	prandom_seed - add entropy to pseudo random number generator
 *	@seed: seed value
 *
 *	Add some additional seeding to the prandom pool.
 */
void prandom_seed(u32 entropy)
{
	int i;
	/*
	 * No locking on the CPUs, but then somewhat random results are, well,
	 * expected.
	 */
	for_each_possible_cpu (i) {
		struct rnd_state *state = &per_cpu(net_rand_state, i);

		state->s1 = __seed(state->s1 ^ entropy, 2U);
		prandom_warmup(state);
	}
}
EXPORT_SYMBOL(prandom_seed);

/*
 *	Generate some initially weak seeding values to allow
 *	to start the prandom_u32() engine.
 */
static int __init prandom_init(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct rnd_state *state = &per_cpu(net_rand_state,i);

#define LCG(x)	((x) * 69069U)	/* super-duper LCG */
		state->s1 = __seed(LCG((i + jiffies) ^ random_get_entropy()), 2U);
		state->s2 = __seed(LCG(state->s1),   8U);
		state->s3 = __seed(LCG(state->s2),  16U);
		state->s4 = __seed(LCG(state->s3), 128U);

		prandom_warmup(state);
	}
	return 0;
}
core_initcall(prandom_init);

static void __prandom_timer(unsigned long dontcare);
static DEFINE_TIMER(seed_timer, __prandom_timer, 0, 0);

static void __prandom_timer(unsigned long dontcare)
{
	u32 entropy;

	get_random_bytes(&entropy, sizeof(entropy));
	prandom_seed(entropy);
	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
	seed_timer.expires = jiffies + (40 * HZ + (prandom_u32() % (40 * HZ)));
	add_timer(&seed_timer);
}

static void prandom_start_seed_timer(void)
{
	set_timer_slack(&seed_timer, HZ);
	seed_timer.expires = jiffies + 40 * HZ;
	add_timer(&seed_timer);
}

/*
 *	Generate better values after random number generator
 *	is fully initialized.
 */
static void __prandom_reseed(bool late)
{
	int i;
	unsigned long flags;
	static bool latch = false;
	static DEFINE_SPINLOCK(lock);

	/* only allow initial seeding (late == false) once */
	spin_lock_irqsave(&lock, flags);
	if (latch && !late)
		goto out;
	latch = true;

	for_each_possible_cpu(i) {
		struct rnd_state *state = &per_cpu(net_rand_state,i);
		u32 seeds[4];

		get_random_bytes(&seeds, sizeof(seeds));
		state->s1 = __seed(seeds[0],   2U);
		state->s2 = __seed(seeds[1],   8U);
		state->s3 = __seed(seeds[2],  16U);
		state->s4 = __seed(seeds[3], 128U);

		prandom_warmup(state);
	}
out:
	spin_unlock_irqrestore(&lock, flags);
}

void prandom_reseed_late(void)
{
	__prandom_reseed(true);
}

static int __init prandom_reseed(void)
{
	__prandom_reseed(false);
	prandom_start_seed_timer();
	return 0;
}
late_initcall(prandom_reseed);