summaryrefslogtreecommitdiffstats
path: root/kernel/locking/mutex.c
blob: 16b2d3cc88b0ca08c58f9ca2f123e3cc0477b0ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
/*
 * kernel/locking/mutex.c
 *
 * Mutexes: blocking mutual exclusion locks
 *
 * Started by Ingo Molnar:
 *
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 * David Howells for suggestions and improvements.
 *
 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 *    from the -rt tree, where it was originally implemented for rtmutexes
 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 *    and Sven Dietrich.
 *
 * Also see Documentation/locking/mutex-design.txt.
 */
#include <linux/mutex.h>
#include <linux/ww_mutex.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/debug_locks.h>
#include <linux/osq_lock.h>

/*
 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
 * which forces all calls into the slowpath:
 */
#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
# include <asm-generic/mutex-null.h>
/*
 * Must be 0 for the debug case so we do not do the unlock outside of the
 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
 * case.
 */
# undef __mutex_slowpath_needs_to_unlock
# define  __mutex_slowpath_needs_to_unlock()	0
#else
# include "mutex.h"
# include <asm/mutex.h>
#endif

void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
	atomic_set(&lock->count, 1);
	spin_lock_init(&lock->wait_lock);
	INIT_LIST_HEAD(&lock->wait_list);
	mutex_clear_owner(lock);
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
	osq_lock_init(&lock->osq);
#endif

	debug_mutex_init(lock, name, key);
}

EXPORT_SYMBOL(__mutex_init);

#ifndef CONFIG_DEBUG_LOCK_ALLOC
/*
 * We split the mutex lock/unlock logic into separate fastpath and
 * slowpath functions, to reduce the register pressure on the fastpath.
 * We also put the fastpath first in the kernel image, to make sure the
 * branch is predicted by the CPU as default-untaken.
 */
__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);

/**
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
 * memory where the mutex resides must not be freed with
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 *   checks that will enforce the restrictions and will also do
 *   deadlock debugging. )
 *
 * This function is similar to (but not equivalent to) down().
 */
void __sched mutex_lock(struct mutex *lock)
{
	might_sleep();
	/*
	 * The locking fastpath is the 1->0 transition from
	 * 'unlocked' into 'locked' state.
	 */
	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
	mutex_set_owner(lock);
}

EXPORT_SYMBOL(mutex_lock);
#endif

static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
						   struct ww_acquire_ctx *ww_ctx)
{
#ifdef CONFIG_DEBUG_MUTEXES
	/*
	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
	 * but released with a normal mutex_unlock in this call.
	 *
	 * This should never happen, always use ww_mutex_unlock.
	 */
	DEBUG_LOCKS_WARN_ON(ww->ctx);

	/*
	 * Not quite done after calling ww_acquire_done() ?
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);

	if (ww_ctx->contending_lock) {
		/*
		 * After -EDEADLK you tried to
		 * acquire a different ww_mutex? Bad!
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);

		/*
		 * You called ww_mutex_lock after receiving -EDEADLK,
		 * but 'forgot' to unlock everything else first?
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
		ww_ctx->contending_lock = NULL;
	}

	/*
	 * Naughty, using a different class will lead to undefined behavior!
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
#endif
	ww_ctx->acquired++;
}

/*
 * After acquiring lock with fastpath or when we lost out in contested
 * slowpath, set ctx and wake up any waiters so they can recheck.
 *
 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
 * as the fastpath and opportunistic spinning are disabled in that case.
 */
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
			       struct ww_acquire_ctx *ctx)
{
	unsigned long flags;
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);

	lock->ctx = ctx;

	/*
	 * The lock->ctx update should be visible on all cores before
	 * the atomic read is done, otherwise contended waiters might be
	 * missed. The contended waiters will either see ww_ctx == NULL
	 * and keep spinning, or it will acquire wait_lock, add itself
	 * to waiter list and sleep.
	 */
	smp_mb(); /* ^^^ */

	/*
	 * Check if lock is contended, if not there is nobody to wake up
	 */
	if (likely(atomic_read(&lock->base.count) == 0))
		return;

	/*
	 * Uh oh, we raced in fastpath, wake up everyone in this case,
	 * so they can see the new lock->ctx.
	 */
	spin_lock_mutex(&lock->base.wait_lock, flags);
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
	spin_unlock_mutex(&lock->base.wait_lock, flags);
}

/*
 * After acquiring lock in the slowpath set ctx and wake up any
 * waiters so they can recheck.
 *
 * Callers must hold the mutex wait_lock.
 */
static __always_inline void
ww_mutex_set_context_slowpath(struct ww_mutex *lock,
			      struct ww_acquire_ctx *ctx)
{
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);
	lock->ctx = ctx;

	/*
	 * Give any possible sleeping processes the chance to wake up,
	 * so they can recheck if they have to back off.
	 */
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
}

#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
static noinline
bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	bool ret;

	rcu_read_lock();
	while (true) {
		/* Return success when the lock owner changed */
		if (lock->owner != owner) {
			ret = true;
			break;
		}

		/*
		 * Ensure we emit the owner->on_cpu, dereference _after_
		 * checking lock->owner still matches owner, if that fails,
		 * owner might point to free()d memory, if it still matches,
		 * the rcu_read_lock() ensures the memory stays valid.
		 */
		barrier();

		if (!owner->on_cpu || need_resched()) {
			ret = false;
			break;
		}

		cpu_relax_lowlatency();
	}
	rcu_read_unlock();

	return ret;
}

/*
 * Initial check for entering the mutex spinning loop
 */
static inline int mutex_can_spin_on_owner(struct mutex *lock)
{
	struct task_struct *owner;
	int retval = 1;

	if (need_resched())
		return 0;

	rcu_read_lock();
	owner = READ_ONCE(lock->owner);
	if (owner)
		retval = owner->on_cpu;
	rcu_read_unlock();
	/*
	 * if lock->owner is not set, the mutex owner may have just acquired
	 * it and not set the owner yet or the mutex has been released.
	 */
	return retval;
}

/*
 * Atomically try to take the lock when it is available
 */
static inline bool mutex_try_to_acquire(struct mutex *lock)
{
	return !mutex_is_locked(lock) &&
		(atomic_cmpxchg(&lock->count, 1, 0) == 1);
}

/*
 * Optimistic spinning.
 *
 * We try to spin for acquisition when we find that the lock owner
 * is currently running on a (different) CPU and while we don't
 * need to reschedule. The rationale is that if the lock owner is
 * running, it is likely to release the lock soon.
 *
 * Since this needs the lock owner, and this mutex implementation
 * doesn't track the owner atomically in the lock field, we need to
 * track it non-atomically.
 *
 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
 * to serialize everything.
 *
 * The mutex spinners are queued up using MCS lock so that only one
 * spinner can compete for the mutex. However, if mutex spinning isn't
 * going to happen, there is no point in going through the lock/unlock
 * overhead.
 *
 * Returns true when the lock was taken, otherwise false, indicating
 * that we need to jump to the slowpath and sleep.
 */
static bool mutex_optimistic_spin(struct mutex *lock,
				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
	struct task_struct *task = current;

	if (!mutex_can_spin_on_owner(lock))
		goto done;

	/*
	 * In order to avoid a stampede of mutex spinners trying to
	 * acquire the mutex all at once, the spinners need to take a
	 * MCS (queued) lock first before spinning on the owner field.
	 */
	if (!osq_lock(&lock->osq))
		goto done;

	while (true) {
		struct task_struct *owner;

		if (use_ww_ctx && ww_ctx->acquired > 0) {
			struct ww_mutex *ww;

			ww = container_of(lock, struct ww_mutex, base);
			/*
			 * If ww->ctx is set the contents are undefined, only
			 * by acquiring wait_lock there is a guarantee that
			 * they are not invalid when reading.
			 *
			 * As such, when deadlock detection needs to be
			 * performed the optimistic spinning cannot be done.
			 */
			if (READ_ONCE(ww->ctx))
				break;
		}

		/*
		 * If there's an owner, wait for it to either
		 * release the lock or go to sleep.
		 */
		owner = READ_ONCE(lock->owner);
		if (owner && !mutex_spin_on_owner(lock, owner))
			break;

		/* Try to acquire the mutex if it is unlocked. */
		if (mutex_try_to_acquire(lock)) {
			lock_acquired(&lock->dep_map, ip);

			if (use_ww_ctx) {
				struct ww_mutex *ww;
				ww = container_of(lock, struct ww_mutex, base);

				ww_mutex_set_context_fastpath(ww, ww_ctx);
			}

			mutex_set_owner(lock);
			osq_unlock(&lock->osq);
			return true;
		}

		/*
		 * When there's no owner, we might have preempted between the
		 * owner acquiring the lock and setting the owner field. If
		 * we're an RT task that will live-lock because we won't let
		 * the owner complete.
		 */
		if (!owner && (need_resched() || rt_task(task)))
			break;

		/*
		 * The cpu_relax() call is a compiler barrier which forces
		 * everything in this loop to be re-loaded. We don't need
		 * memory barriers as we'll eventually observe the right
		 * values at the cost of a few extra spins.
		 */
		cpu_relax_lowlatency();
	}

	osq_unlock(&lock->osq);
done:
	/*
	 * If we fell out of the spin path because of need_resched(),
	 * reschedule now, before we try-lock the mutex. This avoids getting
	 * scheduled out right after we obtained the mutex.
	 */
	if (need_resched()) {
		/*
		 * We _should_ have TASK_RUNNING here, but just in case
		 * we do not, make it so, otherwise we might get stuck.
		 */
		__set_current_state(TASK_RUNNING);
		schedule_preempt_disabled();
	}

	return false;
}
#else
static bool mutex_optimistic_spin(struct mutex *lock,
				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
	return false;
}
#endif

__visible __used noinline
void __sched __mutex_unlock_slowpath(atomic_t *lock_count);

/**
 * mutex_unlock - release the mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a not locked mutex is not allowed.
 *
 * This function is similar to (but not equivalent to) up().
 */
void __sched mutex_unlock(struct mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
#ifndef CONFIG_DEBUG_MUTEXES
	/*
	 * When debugging is enabled we must not clear the owner before time,
	 * the slow path will always be taken, and that clears the owner field
	 * after verifying that it was indeed current.
	 */
	mutex_clear_owner(lock);
#endif
	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
}

EXPORT_SYMBOL(mutex_unlock);

/**
 * ww_mutex_unlock - release the w/w mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously with any of the
 * ww_mutex_lock* functions (with or without an acquire context). It is
 * forbidden to release the locks after releasing the acquire context.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a unlocked mutex is not allowed.
 */
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
	if (lock->ctx) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
#endif
		if (lock->ctx->acquired > 0)
			lock->ctx->acquired--;
		lock->ctx = NULL;
	}

#ifndef CONFIG_DEBUG_MUTEXES
	/*
	 * When debugging is enabled we must not clear the owner before time,
	 * the slow path will always be taken, and that clears the owner field
	 * after verifying that it was indeed current.
	 */
	mutex_clear_owner(&lock->base);
#endif
	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
}
EXPORT_SYMBOL(ww_mutex_unlock);

static inline int __sched
__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
{
	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);

	if (!hold_ctx)
		return 0;

	if (unlikely(ctx == hold_ctx))
		return -EALREADY;

	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
		ctx->contending_lock = ww;
#endif
		return -EDEADLK;
	}

	return 0;
}

/*
 * Lock a mutex (possibly interruptible), slowpath:
 */
static __always_inline int __sched
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
		    struct lockdep_map *nest_lock, unsigned long ip,
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
	struct task_struct *task = current;
	struct mutex_waiter waiter;
	unsigned long flags;
	int ret;

	preempt_disable();
	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);

	if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
		/* got the lock, yay! */
		preempt_enable();
		return 0;
	}

	spin_lock_mutex(&lock->wait_lock, flags);

	/*
	 * Once more, try to acquire the lock. Only try-lock the mutex if
	 * it is unlocked to reduce unnecessary xchg() operations.
	 */
	if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
		goto skip_wait;

	debug_mutex_lock_common(lock, &waiter);
	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));

	/* add waiting tasks to the end of the waitqueue (FIFO): */
	list_add_tail(&waiter.list, &lock->wait_list);
	waiter.task = task;

	lock_contended(&lock->dep_map, ip);

	for (;;) {
		/*
		 * Lets try to take the lock again - this is needed even if
		 * we get here for the first time (shortly after failing to
		 * acquire the lock), to make sure that we get a wakeup once
		 * it's unlocked. Later on, if we sleep, this is the
		 * operation that gives us the lock. We xchg it to -1, so
		 * that when we release the lock, we properly wake up the
		 * other waiters. We only attempt the xchg if the count is
		 * non-negative in order to avoid unnecessary xchg operations:
		 */
		if (atomic_read(&lock->count) >= 0 &&
		    (atomic_xchg(&lock->count, -1) == 1))
			break;

		/*
		 * got a signal? (This code gets eliminated in the
		 * TASK_UNINTERRUPTIBLE case.)
		 */
		if (unlikely(signal_pending_state(state, task))) {
			ret = -EINTR;
			goto err;
		}

		if (use_ww_ctx && ww_ctx->acquired > 0) {
			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
			if (ret)
				goto err;
		}

		__set_task_state(task, state);

		/* didn't get the lock, go to sleep: */
		spin_unlock_mutex(&lock->wait_lock, flags);
		schedule_preempt_disabled();
		spin_lock_mutex(&lock->wait_lock, flags);
	}
	__set_task_state(task, TASK_RUNNING);

	mutex_remove_waiter(lock, &waiter, current_thread_info());
	/* set it to 0 if there are no waiters left: */
	if (likely(list_empty(&lock->wait_list)))
		atomic_set(&lock->count, 0);
	debug_mutex_free_waiter(&waiter);

skip_wait:
	/* got the lock - cleanup and rejoice! */
	lock_acquired(&lock->dep_map, ip);
	mutex_set_owner(lock);

	if (use_ww_ctx) {
		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
		ww_mutex_set_context_slowpath(ww, ww_ctx);
	}

	spin_unlock_mutex(&lock->wait_lock, flags);
	preempt_enable();
	return 0;

err:
	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
	spin_unlock_mutex(&lock->wait_lock, flags);
	debug_mutex_free_waiter(&waiter);
	mutex_release(&lock->dep_map, 1, ip);
	preempt_enable();
	return ret;
}

#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
			    subclass, NULL, _RET_IP_, NULL, 0);
}

EXPORT_SYMBOL_GPL(mutex_lock_nested);

void __sched
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
	might_sleep();
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
			    0, nest, _RET_IP_, NULL, 0);
}

EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);

int __sched
mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
	return __mutex_lock_common(lock, TASK_KILLABLE,
				   subclass, NULL, _RET_IP_, NULL, 0);
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);

int __sched
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
				   subclass, NULL, _RET_IP_, NULL, 0);
}

EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);

static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
	unsigned tmp;

	if (ctx->deadlock_inject_countdown-- == 0) {
		tmp = ctx->deadlock_inject_interval;
		if (tmp > UINT_MAX/4)
			tmp = UINT_MAX;
		else
			tmp = tmp*2 + tmp + tmp/2;

		ctx->deadlock_inject_interval = tmp;
		ctx->deadlock_inject_countdown = tmp;
		ctx->contending_lock = lock;

		ww_mutex_unlock(lock);

		return -EDEADLK;
	}
#endif

	return 0;
}

int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();
	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
	if (!ret && ctx->acquired > 1)
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();
	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
				  0, &ctx->dep_map, _RET_IP_, ctx, 1);

	if (!ret && ctx->acquired > 1)
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);

#endif

/*
 * Release the lock, slowpath:
 */
static inline void
__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
{
	unsigned long flags;

	/*
	 * As a performance measurement, release the lock before doing other
	 * wakeup related duties to follow. This allows other tasks to acquire
	 * the lock sooner, while still handling cleanups in past unlock calls.
	 * This can be done as we do not enforce strict equivalence between the
	 * mutex counter and wait_list.
	 *
	 *
	 * Some architectures leave the lock unlocked in the fastpath failure
	 * case, others need to leave it locked. In the later case we have to
	 * unlock it here - as the lock counter is currently 0 or negative.
	 */
	if (__mutex_slowpath_needs_to_unlock())
		atomic_set(&lock->count, 1);

	spin_lock_mutex(&lock->wait_lock, flags);
	mutex_release(&lock->dep_map, nested, _RET_IP_);
	debug_mutex_unlock(lock);

	if (!list_empty(&lock->wait_list)) {
		/* get the first entry from the wait-list: */
		struct mutex_waiter *waiter =
				list_entry(lock->wait_list.next,
					   struct mutex_waiter, list);

		debug_mutex_wake_waiter(lock, waiter);

		wake_up_process(waiter->task);
	}

	spin_unlock_mutex(&lock->wait_lock, flags);
}

/*
 * Release the lock, slowpath:
 */
__visible void
__mutex_unlock_slowpath(atomic_t *lock_count)
{
	struct mutex *lock = container_of(lock_count, struct mutex, count);

	__mutex_unlock_common_slowpath(lock, 1);
}

#ifndef CONFIG_DEBUG_LOCK_ALLOC
/*
 * Here come the less common (and hence less performance-critical) APIs:
 * mutex_lock_interruptible() and mutex_trylock().
 */
static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex *lock);

static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex *lock);

/**
 * mutex_lock_interruptible - acquire the mutex, interruptible
 * @lock: the mutex to be acquired
 *
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 * been acquired or sleep until the mutex becomes available. If a
 * signal arrives while waiting for the lock then this function
 * returns -EINTR.
 *
 * This function is similar to (but not equivalent to) down_interruptible().
 */
int __sched mutex_lock_interruptible(struct mutex *lock)
{
	int ret;

	might_sleep();
	ret =  __mutex_fastpath_lock_retval(&lock->count);
	if (likely(!ret)) {
		mutex_set_owner(lock);
		return 0;
	} else
		return __mutex_lock_interruptible_slowpath(lock);
}

EXPORT_SYMBOL(mutex_lock_interruptible);

int __sched mutex_lock_killable(struct mutex *lock)
{
	int ret;

	might_sleep();
	ret = __mutex_fastpath_lock_retval(&lock->count);
	if (likely(!ret)) {
		mutex_set_owner(lock);
		return 0;
	} else
		return __mutex_lock_killable_slowpath(lock);
}
EXPORT_SYMBOL(mutex_lock_killable);

__visible void __sched
__mutex_lock_slowpath(atomic_t *lock_count)
{
	struct mutex *lock = container_of(lock_count, struct mutex, count);

	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
			    NULL, _RET_IP_, NULL, 0);
}

static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex *lock)
{
	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
				   NULL, _RET_IP_, NULL, 0);
}

static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex *lock)
{
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
				   NULL, _RET_IP_, NULL, 0);
}

static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
				   NULL, _RET_IP_, ctx, 1);
}

static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
					    struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
				   NULL, _RET_IP_, ctx, 1);
}

#endif

/*
 * Spinlock based trylock, we take the spinlock and check whether we
 * can get the lock:
 */
static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
{
	struct mutex *lock = container_of(lock_count, struct mutex, count);
	unsigned long flags;
	int prev;

	/* No need to trylock if the mutex is locked. */
	if (mutex_is_locked(lock))
		return 0;

	spin_lock_mutex(&lock->wait_lock, flags);

	prev = atomic_xchg(&lock->count, -1);
	if (likely(prev == 1)) {
		mutex_set_owner(lock);
		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
	}

	/* Set it back to 0 if there are no waiters: */
	if (likely(list_empty(&lock->wait_list)))
		atomic_set(&lock->count, 0);

	spin_unlock_mutex(&lock->wait_lock, flags);

	return prev == 1;
}

/**
 * mutex_trylock - try to acquire the mutex, without waiting
 * @lock: the mutex to be acquired
 *
 * Try to acquire the mutex atomically. Returns 1 if the mutex
 * has been acquired successfully, and 0 on contention.
 *
 * NOTE: this function follows the spin_trylock() convention, so
 * it is negated from the down_trylock() return values! Be careful
 * about this when converting semaphore users to mutexes.
 *
 * This function must not be used in interrupt context. The
 * mutex must be released by the same task that acquired it.
 */
int __sched mutex_trylock(struct mutex *lock)
{
	int ret;

	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
	if (ret)
		mutex_set_owner(lock);

	return ret;
}
EXPORT_SYMBOL(mutex_trylock);

#ifndef CONFIG_DEBUG_LOCK_ALLOC
int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();

	ret = __mutex_fastpath_lock_retval(&lock->base.count);

	if (likely(!ret)) {
		ww_mutex_set_context_fastpath(lock, ctx);
		mutex_set_owner(&lock->base);
	} else
		ret = __ww_mutex_lock_slowpath(lock, ctx);
	return ret;
}
EXPORT_SYMBOL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();

	ret = __mutex_fastpath_lock_retval(&lock->base.count);

	if (likely(!ret)) {
		ww_mutex_set_context_fastpath(lock, ctx);
		mutex_set_owner(&lock->base);
	} else
		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
	return ret;
}
EXPORT_SYMBOL(__ww_mutex_lock_interruptible);

#endif

/**
 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 * @cnt: the atomic which we are to dec
 * @lock: the mutex to return holding if we dec to 0
 *
 * return true and hold lock if we dec to 0, return false otherwise
 */
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
	/* dec if we can't possibly hit 0 */
	if (atomic_add_unless(cnt, -1, 1))
		return 0;
	/* we might hit 0, so take the lock */
	mutex_lock(lock);
	if (!atomic_dec_and_test(cnt)) {
		/* when we actually did the dec, we didn't hit 0 */
		mutex_unlock(lock);
		return 0;
	}
	/* we hit 0, and we hold the lock */
	return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);