summaryrefslogtreecommitdiffstats
path: root/kernel/dma/mapping.c
blob: 64a3d294f4b45734d40126511d192421153c1d16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// SPDX-License-Identifier: GPL-2.0
/*
 * arch-independent dma-mapping routines
 *
 * Copyright (c) 2006  SUSE Linux Products GmbH
 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
 */
#include <linux/memblock.h> /* for max_pfn */
#include <linux/acpi.h>
#include <linux/dma-direct.h>
#include <linux/dma-noncoherent.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>

/*
 * Managed DMA API
 */
struct dma_devres {
	size_t		size;
	void		*vaddr;
	dma_addr_t	dma_handle;
	unsigned long	attrs;
};

static void dmam_release(struct device *dev, void *res)
{
	struct dma_devres *this = res;

	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
			this->attrs);
}

static int dmam_match(struct device *dev, void *res, void *match_data)
{
	struct dma_devres *this = res, *match = match_data;

	if (this->vaddr == match->vaddr) {
		WARN_ON(this->size != match->size ||
			this->dma_handle != match->dma_handle);
		return 1;
	}
	return 0;
}

/**
 * dmam_free_coherent - Managed dma_free_coherent()
 * @dev: Device to free coherent memory for
 * @size: Size of allocation
 * @vaddr: Virtual address of the memory to free
 * @dma_handle: DMA handle of the memory to free
 *
 * Managed dma_free_coherent().
 */
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
			dma_addr_t dma_handle)
{
	struct dma_devres match_data = { size, vaddr, dma_handle };

	dma_free_coherent(dev, size, vaddr, dma_handle);
	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
}
EXPORT_SYMBOL(dmam_free_coherent);

/**
 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 * @dev: Device to allocate non_coherent memory for
 * @size: Size of allocation
 * @dma_handle: Out argument for allocated DMA handle
 * @gfp: Allocation flags
 * @attrs: Flags in the DMA_ATTR_* namespace.
 *
 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 * automatically released on driver detach.
 *
 * RETURNS:
 * Pointer to allocated memory on success, NULL on failure.
 */
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t gfp, unsigned long attrs)
{
	struct dma_devres *dr;
	void *vaddr;

	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
	if (!dr)
		return NULL;

	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
	if (!vaddr) {
		devres_free(dr);
		return NULL;
	}

	dr->vaddr = vaddr;
	dr->dma_handle = *dma_handle;
	dr->size = size;
	dr->attrs = attrs;

	devres_add(dev, dr);

	return vaddr;
}
EXPORT_SYMBOL(dmam_alloc_attrs);

/*
 * Create scatter-list for the already allocated DMA buffer.
 */
int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 unsigned long attrs)
{
	struct page *page;
	int ret;

	if (!dev_is_dma_coherent(dev)) {
		unsigned long pfn;

		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
			return -ENXIO;

		/* If the PFN is not valid, we do not have a struct page */
		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
		if (!pfn_valid(pfn))
			return -ENXIO;
		page = pfn_to_page(pfn);
	} else {
		page = virt_to_page(cpu_addr);
	}

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (!ret)
		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return ret;
}

/*
 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
 * that the intention is to allow exporting memory allocated via the
 * coherent DMA APIs through the dma_buf API, which only accepts a
 * scattertable.  This presents a couple of problems:
 * 1. Not all memory allocated via the coherent DMA APIs is backed by
 *    a struct page
 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
 *    as we will try to flush the memory through a different alias to that
 *    actually being used (and the flushes are redundant.)
 */
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_is_direct(ops))
		return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
				size, attrs);
	if (!ops->get_sgtable)
		return -ENXIO;
	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_get_sgtable_attrs);

#ifdef CONFIG_MMU
/*
 * Return the page attributes used for mapping dma_alloc_* memory, either in
 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
 */
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
{
	if (dev_is_dma_coherent(dev) ||
	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
             (attrs & DMA_ATTR_NON_CONSISTENT)))
		return prot;
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
	if (attrs & DMA_ATTR_WRITE_COMBINE)
		return pgprot_writecombine(prot);
#endif
	return pgprot_dmacoherent(prot);
}
#endif /* CONFIG_MMU */

/*
 * Create userspace mapping for the DMA-coherent memory.
 */
int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
#ifdef CONFIG_MMU
	unsigned long user_count = vma_pages(vma);
	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned long off = vma->vm_pgoff;
	unsigned long pfn;
	int ret = -ENXIO;

	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);

	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

	if (off >= count || user_count > count - off)
		return -ENXIO;

	if (!dev_is_dma_coherent(dev)) {
		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
			return -ENXIO;

		/* If the PFN is not valid, we do not have a struct page */
		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
		if (!pfn_valid(pfn))
			return -ENXIO;
	} else {
		pfn = page_to_pfn(virt_to_page(cpu_addr));
	}

	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
			user_count << PAGE_SHIFT, vma->vm_page_prot);
#else
	return -ENXIO;
#endif /* CONFIG_MMU */
}

/**
 * dma_can_mmap - check if a given device supports dma_mmap_*
 * @dev: device to check
 *
 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
 * map DMA allocations to userspace.
 */
bool dma_can_mmap(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_is_direct(ops)) {
		return IS_ENABLED(CONFIG_MMU) &&
		       (dev_is_dma_coherent(dev) ||
			IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
	}

	return ops->mmap != NULL;
}
EXPORT_SYMBOL_GPL(dma_can_mmap);

/**
 * dma_mmap_attrs - map a coherent DMA allocation into user space
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @vma: vm_area_struct describing requested user mapping
 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 * @dma_addr: device-view address returned from dma_alloc_attrs
 * @size: size of memory originally requested in dma_alloc_attrs
 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 *
 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
 * space.  The coherent DMA buffer must not be freed by the driver until the
 * user space mapping has been released.
 */
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_is_direct(ops))
		return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
				attrs);
	if (!ops->mmap)
		return -ENXIO;
	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_mmap_attrs);

u64 dma_get_required_mask(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_is_direct(ops))
		return dma_direct_get_required_mask(dev);
	if (ops->get_required_mask)
		return ops->get_required_mask(dev);

	/*
	 * We require every DMA ops implementation to at least support a 32-bit
	 * DMA mask (and use bounce buffering if that isn't supported in
	 * hardware).  As the direct mapping code has its own routine to
	 * actually report an optimal mask we default to 32-bit here as that
	 * is the right thing for most IOMMUs, and at least not actively
	 * harmful in general.
	 */
	return DMA_BIT_MASK(32);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);

void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t flag, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	void *cpu_addr;

	WARN_ON_ONCE(!dev->coherent_dma_mask);

	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
		return cpu_addr;

	/* let the implementation decide on the zone to allocate from: */
	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);

	if (dma_is_direct(ops))
		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
	else if (ops->alloc)
		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
	else
		return NULL;

	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
	return cpu_addr;
}
EXPORT_SYMBOL(dma_alloc_attrs);

void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
		dma_addr_t dma_handle, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
		return;
	/*
	 * On non-coherent platforms which implement DMA-coherent buffers via
	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
	 * sleep on some machines, and b) an indication that the driver is
	 * probably misusing the coherent API anyway.
	 */
	WARN_ON(irqs_disabled());

	if (!cpu_addr)
		return;

	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
	if (dma_is_direct(ops))
		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
	else if (ops->free)
		ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
EXPORT_SYMBOL(dma_free_attrs);

static inline void dma_check_mask(struct device *dev, u64 mask)
{
	if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
		dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
}

int dma_supported(struct device *dev, u64 mask)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_is_direct(ops))
		return dma_direct_supported(dev, mask);
	if (!ops->dma_supported)
		return 1;
	return ops->dma_supported(dev, mask);
}
EXPORT_SYMBOL(dma_supported);

#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
void arch_dma_set_mask(struct device *dev, u64 mask);
#else
#define arch_dma_set_mask(dev, mask)	do { } while (0)
#endif

int dma_set_mask(struct device *dev, u64 mask)
{
	/*
	 * Truncate the mask to the actually supported dma_addr_t width to
	 * avoid generating unsupportable addresses.
	 */
	mask = (dma_addr_t)mask;

	if (!dev->dma_mask || !dma_supported(dev, mask))
		return -EIO;

	arch_dma_set_mask(dev, mask);
	dma_check_mask(dev, mask);
	*dev->dma_mask = mask;
	return 0;
}
EXPORT_SYMBOL(dma_set_mask);

#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
	/*
	 * Truncate the mask to the actually supported dma_addr_t width to
	 * avoid generating unsupportable addresses.
	 */
	mask = (dma_addr_t)mask;

	if (!dma_supported(dev, mask))
		return -EIO;

	dma_check_mask(dev, mask);
	dev->coherent_dma_mask = mask;
	return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#endif

void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
		enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));

	if (dma_is_direct(ops))
		arch_dma_cache_sync(dev, vaddr, size, dir);
	else if (ops->cache_sync)
		ops->cache_sync(dev, vaddr, size, dir);
}
EXPORT_SYMBOL(dma_cache_sync);

size_t dma_max_mapping_size(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	size_t size = SIZE_MAX;

	if (dma_is_direct(ops))
		size = dma_direct_max_mapping_size(dev);
	else if (ops && ops->max_mapping_size)
		size = ops->max_mapping_size(dev);

	return size;
}
EXPORT_SYMBOL_GPL(dma_max_mapping_size);

unsigned long dma_get_merge_boundary(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (!ops || !ops->get_merge_boundary)
		return 0;	/* can't merge */

	return ops->get_merge_boundary(dev);
}
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);