summaryrefslogtreecommitdiffstats
path: root/kernel/cgroup.c
blob: 5a2fcf5bcc4ae9b7cffe93782e9104e6c2508f59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/cred.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/backing-dev.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/sort.h>
#include <linux/kmod.h>
#include <linux/module.h>
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
#include <linux/hashtable.h>
#include <linux/namei.h>
#include <linux/pid_namespace.h>
#include <linux/idr.h>
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
#include <linux/eventfd.h>
#include <linux/poll.h>
#include <linux/flex_array.h> /* used in cgroup_attach_task */
#include <linux/kthread.h>

#include <linux/atomic.h>

/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for task_subsys_state_check() */
#else
static DEFINE_MUTEX(cgroup_mutex);
#endif

static DEFINE_MUTEX(cgroup_root_mutex);

/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated with the built in subsystems, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
#include <linux/cgroup_subsys.h>
};

/*
 * The dummy hierarchy, reserved for the subsystems that are otherwise
 * unattached - it never has more than a single cgroup, and all tasks are
 * part of that cgroup.
 */
static struct cgroupfs_root cgroup_dummy_root;

/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;

/*
 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 */
struct cfent {
	struct list_head		node;
	struct dentry			*dentry;
	struct cftype			*type;

	/* file xattrs */
	struct simple_xattrs		xattrs;
};

/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_tryget()
	 * should be used for avoiding race.
	 */
	struct cgroup_subsys_state __rcu *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

/*
 * cgroup_event represents events which userspace want to receive.
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

/* The list of hierarchy roots */

static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;

/*
 * Hierarchy ID allocation and mapping.  It follows the same exclusion
 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
 * writes, either for reads.
 */
static DEFINE_IDR(cgroup_hierarchy_idr);

static struct cgroup_name root_cgroup_name = { .name = "/" };

/*
 * Assign a monotonically increasing serial number to cgroups.  It
 * guarantees cgroups with bigger numbers are newer than those with smaller
 * numbers.  Also, as cgroups are always appended to the parent's
 * ->children list, it guarantees that sibling cgroups are always sorted in
 * the ascending serial number order on the list.  Protected by
 * cgroup_mutex.
 */
static u64 cgroup_serial_nr_next = 1;

/* This flag indicates whether tasks in the fork and exit paths should
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
 */
static int need_forkexit_callback __read_mostly;

static void cgroup_offline_fn(struct work_struct *work);
static int cgroup_destroy_locked(struct cgroup *cgrp);
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			      struct cftype cfts[], bool is_add);

/* convenient tests for these bits */
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
{
	return test_bit(CGRP_DEAD, &cgrp->flags);
}

/**
 * cgroup_is_descendant - test ancestry
 * @cgrp: the cgroup to be tested
 * @ancestor: possible ancestor of @cgrp
 *
 * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
 * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
 * and @ancestor are accessible.
 */
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
	while (cgrp) {
		if (cgrp == ancestor)
			return true;
		cgrp = cgrp->parent;
	}
	return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);

static int cgroup_is_releasable(const struct cgroup *cgrp)
{
	const int bits =
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
}

static int notify_on_release(const struct cgroup *cgrp)
{
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
}

/**
 * for_each_subsys - iterate all loaded cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 *
 * Should be called under cgroup_mutex.
 */
#define for_each_subsys(ss, i)						\
	for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++)			\
		if (({ lockdep_assert_held(&cgroup_mutex);		\
		       !((ss) = cgroup_subsys[i]); })) { }		\
		else

/**
 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
 *
 * Bulit-in subsystems are always present and iteration itself doesn't
 * require any synchronization.
 */
#define for_each_builtin_subsys(ss, i)					\
	for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT &&		\
	     (((ss) = cgroup_subsys[i]) || true); (i)++)

/* iterate each subsystem attached to a hierarchy */
#define for_each_root_subsys(root, ss)					\
	list_for_each_entry((ss), &(root)->subsys_list, sibling)

/* iterate across the active hierarchies */
#define for_each_active_root(root)					\
	list_for_each_entry((root), &cgroup_roots, root_list)

static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cfent *__d_cfe(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
 * On success, returns true; the mutex should be later unlocked.  On
 * failure returns false with no lock held.
 */
static bool cgroup_lock_live_group(struct cgroup *cgrp)
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_dead(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_RAW_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
static void check_for_release(struct cgroup *cgrp);

/*
 * A cgroup can be associated with multiple css_sets as different tasks may
 * belong to different cgroups on different hierarchies.  In the other
 * direction, a css_set is naturally associated with multiple cgroups.
 * This M:N relationship is represented by the following link structure
 * which exists for each association and allows traversing the associations
 * from both sides.
 */
struct cgrp_cset_link {
	/* the cgroup and css_set this link associates */
	struct cgroup		*cgrp;
	struct css_set		*cset;

	/* list of cgrp_cset_links anchored at cgrp->cset_links */
	struct list_head	cset_link;

	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
	struct list_head	cgrp_link;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cgrp_cset_link init_cgrp_cset_link;

static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
#define CSS_SET_HASH_BITS	7
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);

static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
{
	unsigned long key = 0UL;
	struct cgroup_subsys *ss;
	int i;

	for_each_subsys(ss, i)
		key += (unsigned long)css[i];
	key = (key >> 16) ^ key;

	return key;
}

/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
static int use_task_css_set_links __read_mostly;

static void __put_css_set(struct css_set *cset, int taskexit)
{
	struct cgrp_cset_link *link, *tmp_link;

	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cset->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cset->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}

	/* This css_set is dead. unlink it and release cgroup refcounts */
	hash_del(&cset->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
		struct cgroup *cgrp = link->cgrp;

		list_del(&link->cset_link);
		list_del(&link->cgrp_link);

		/* @cgrp can't go away while we're holding css_set_lock */
		if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
			if (taskexit)
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}

		kfree(link);
	}

	write_unlock(&css_set_lock);
	kfree_rcu(cset, rcu_head);
}

/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cset)
{
	atomic_inc(&cset->refcount);
}

static inline void put_css_set(struct css_set *cset)
{
	__put_css_set(cset, 0);
}

static inline void put_css_set_taskexit(struct css_set *cset)
{
	__put_css_set(cset, 1);
}

/**
 * compare_css_sets - helper function for find_existing_css_set().
 * @cset: candidate css_set being tested
 * @old_cset: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cset,
			     struct css_set *old_cset,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cset->cgrp_links;
	l2 = &old_cset->cgrp_links;
	while (1) {
		struct cgrp_cset_link *link1, *link2;
		struct cgroup *cgrp1, *cgrp2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cset->cgrp_links) {
			BUG_ON(l2 != &old_cset->cgrp_links);
			break;
		} else {
			BUG_ON(l2 == &old_cset->cgrp_links);
		}
		/* Locate the cgroups associated with these links. */
		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
		cgrp1 = link1->cgrp;
		cgrp2 = link2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cgrp1->root != cgrp2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cgrp1->root == new_cgrp->root) {
			if (cgrp1 != new_cgrp)
				return false;
		} else {
			if (cgrp1 != cgrp2)
				return false;
		}
	}
	return true;
}

/**
 * find_existing_css_set - init css array and find the matching css_set
 * @old_cset: the css_set that we're using before the cgroup transition
 * @cgrp: the cgroup that we're moving into
 * @template: out param for the new set of csses, should be clear on entry
 */
static struct css_set *find_existing_css_set(struct css_set *old_cset,
					struct cgroup *cgrp,
					struct cgroup_subsys_state *template[])
{
	struct cgroupfs_root *root = cgrp->root;
	struct cgroup_subsys *ss;
	struct css_set *cset;
	unsigned long key;
	int i;

	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
	for_each_subsys(ss, i) {
		if (root->subsys_mask & (1UL << i)) {
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
			template[i] = cgrp->subsys[i];
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = old_cset->subsys[i];
		}
	}

	key = css_set_hash(template);
	hash_for_each_possible(css_set_table, cset, hlist, key) {
		if (!compare_css_sets(cset, old_cset, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cset;
	}

	/* No existing cgroup group matched */
	return NULL;
}

static void free_cgrp_cset_links(struct list_head *links_to_free)
{
	struct cgrp_cset_link *link, *tmp_link;

	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
		list_del(&link->cset_link);
		kfree(link);
	}
}

/**
 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 * @count: the number of links to allocate
 * @tmp_links: list_head the allocated links are put on
 *
 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 * through ->cset_link.  Returns 0 on success or -errno.
 */
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
{
	struct cgrp_cset_link *link;
	int i;

	INIT_LIST_HEAD(tmp_links);

	for (i = 0; i < count; i++) {
		link = kzalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
			free_cgrp_cset_links(tmp_links);
			return -ENOMEM;
		}
		list_add(&link->cset_link, tmp_links);
	}
	return 0;
}

/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
 * @cset: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
			 struct cgroup *cgrp)
{
	struct cgrp_cset_link *link;

	BUG_ON(list_empty(tmp_links));
	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
	link->cset = cset;
	link->cgrp = cgrp;
	list_move(&link->cset_link, &cgrp->cset_links);
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
}

/**
 * find_css_set - return a new css_set with one cgroup updated
 * @old_cset: the baseline css_set
 * @cgrp: the cgroup to be updated
 *
 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
 * substituted into the appropriate hierarchy.
 */
static struct css_set *find_css_set(struct css_set *old_cset,
				    struct cgroup *cgrp)
{
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
	struct css_set *cset;
	struct list_head tmp_links;
	struct cgrp_cset_link *link;
	unsigned long key;

	lockdep_assert_held(&cgroup_mutex);

	/* First see if we already have a cgroup group that matches
	 * the desired set */
	read_lock(&css_set_lock);
	cset = find_existing_css_set(old_cset, cgrp, template);
	if (cset)
		get_css_set(cset);
	read_unlock(&css_set_lock);

	if (cset)
		return cset;

	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
	if (!cset)
		return NULL;

	/* Allocate all the cgrp_cset_link objects that we'll need */
	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
		kfree(cset);
		return NULL;
	}

	atomic_set(&cset->refcount, 1);
	INIT_LIST_HEAD(&cset->cgrp_links);
	INIT_LIST_HEAD(&cset->tasks);
	INIT_HLIST_NODE(&cset->hlist);

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(cset->subsys, template, sizeof(cset->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
		struct cgroup *c = link->cgrp;

		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_links, cset, c);
	}

	BUG_ON(!list_empty(&tmp_links));

	css_set_count++;

	/* Add this cgroup group to the hash table */
	key = css_set_hash(cset->subsys);
	hash_add(css_set_table, &cset->hlist, key);

	write_unlock(&css_set_lock);

	return cset;
}

/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *cset;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	cset = task_css_set(task);
	if (cset == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cgrp_cset_link *link;

		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
			struct cgroup *c = link->cgrp;

			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
 * cgroup_attach_task() can increment it again.  Because a count of zero
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
 * another.  It does so using cgroup_mutex, however there are
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cgroup pointer by cgroup_attach_task()
 */

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
			       unsigned long subsys_mask);
static const struct inode_operations cgroup_dir_inode_operations;
static const struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
	.name		= "cgroup",
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
};

static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_ino = get_next_ino();
		inode->i_mode = mode;
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
{
	struct cgroup_name *name;

	name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
	if (!name)
		return NULL;
	strcpy(name->name, dentry->d_name.name);
	return name;
}

static void cgroup_free_fn(struct work_struct *work)
{
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	/*
	 * Release the subsystem state objects.
	 */
	for_each_root_subsys(cgrp->root, ss)
		ss->css_free(cgrp);

	cgrp->root->number_of_cgroups--;
	mutex_unlock(&cgroup_mutex);

	/*
	 * We get a ref to the parent's dentry, and put the ref when
	 * this cgroup is being freed, so it's guaranteed that the
	 * parent won't be destroyed before its children.
	 */
	dput(cgrp->parent->dentry);

	ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);

	/*
	 * Drop the active superblock reference that we took when we
	 * created the cgroup. This will free cgrp->root, if we are
	 * holding the last reference to @sb.
	 */
	deactivate_super(cgrp->root->sb);

	/*
	 * if we're getting rid of the cgroup, refcount should ensure
	 * that there are no pidlists left.
	 */
	BUG_ON(!list_empty(&cgrp->pidlists));

	simple_xattrs_free(&cgrp->xattrs);

	kfree(rcu_dereference_raw(cgrp->name));
	kfree(cgrp);
}

static void cgroup_free_rcu(struct rcu_head *head)
{
	struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);

	INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
	schedule_work(&cgrp->destroy_work);
}

static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
		struct cgroup *cgrp = dentry->d_fsdata;

		BUG_ON(!(cgroup_is_dead(cgrp)));
		call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
		simple_xattrs_free(&cfe->xattrs);
		kfree(cfe);
	}
	iput(inode);
}

static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

	/*
	 * If we're doing cleanup due to failure of cgroup_create(),
	 * the corresponding @cfe may not exist.
	 */
	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
		simple_unlink(cgrp->dentry->d_inode, d);
		list_del_init(&cfe->node);
		dput(d);

		break;
	}
}

/**
 * cgroup_clear_directory - selective removal of base and subsystem files
 * @dir: directory containing the files
 * @base_files: true if the base files should be removed
 * @subsys_mask: mask of the subsystem ids whose files should be removed
 */
static void cgroup_clear_directory(struct dentry *dir, bool base_files,
				   unsigned long subsys_mask)
{
	struct cgroup *cgrp = __d_cgrp(dir);
	struct cgroup_subsys *ss;

	for_each_root_subsys(cgrp->root, ss) {
		struct cftype_set *set;
		if (!test_bit(ss->subsys_id, &subsys_mask))
			continue;
		list_for_each_entry(set, &ss->cftsets, node)
			cgroup_addrm_files(cgrp, NULL, set->cfts, false);
	}
	if (base_files) {
		while (!list_empty(&cgrp->files))
			cgroup_rm_file(cgrp, NULL);
	}
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	struct dentry *parent;
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;

	cgroup_clear_directory(dentry, true, root->subsys_mask);

	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
	remove_dir(dentry);
}

/*
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
 */
static int rebind_subsystems(struct cgroupfs_root *root,
			     unsigned long added_mask, unsigned removed_mask)
{
	struct cgroup *cgrp = &root->top_cgroup;
	struct cgroup_subsys *ss;
	int i;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));

	/* Check that any added subsystems are currently free */
	for_each_subsys(ss, i) {
		unsigned long bit = 1UL << i;

		if (!(bit & added_mask))
			continue;

		if (ss->root != &cgroup_dummy_root) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
	if (root->number_of_cgroups > 1)
		return -EBUSY;

	/* Process each subsystem */
	for_each_subsys(ss, i) {
		unsigned long bit = 1UL << i;

		if (bit & added_mask) {
			/* We're binding this subsystem to this hierarchy */
			BUG_ON(cgrp->subsys[i]);
			BUG_ON(!cgroup_dummy_top->subsys[i]);
			BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);

			cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
			list_move(&ss->sibling, &root->subsys_list);
			ss->root = root;
			if (ss->bind)
				ss->bind(cgrp);

			/* refcount was already taken, and we're keeping it */
			root->subsys_mask |= bit;
		} else if (bit & removed_mask) {
			/* We're removing this subsystem */
			BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);

			if (ss->bind)
				ss->bind(cgroup_dummy_top);
			cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
			cgrp->subsys[i] = NULL;
			cgroup_subsys[i]->root = &cgroup_dummy_root;
			list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);

			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
			root->subsys_mask &= ~bit;
		} else if (bit & root->subsys_mask) {
			/* Subsystem state should already exist */
			BUG_ON(!cgrp->subsys[i]);
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
		} else {
			/* Subsystem state shouldn't exist */
			BUG_ON(cgrp->subsys[i]);
		}
	}

	/*
	 * Mark @root has finished binding subsystems.  @root->subsys_mask
	 * now matches the bound subsystems.
	 */
	root->flags |= CGRP_ROOT_SUBSYS_BOUND;

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
{
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_root_mutex);
	for_each_root_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
		seq_puts(seq, ",sane_behavior");
	if (root->flags & CGRP_ROOT_NOPREFIX)
		seq_puts(seq, ",noprefix");
	if (root->flags & CGRP_ROOT_XATTR)
		seq_puts(seq, ",xattr");
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
		seq_puts(seq, ",clone_children");
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
	mutex_unlock(&cgroup_root_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_mask;
	unsigned long flags;
	char *release_agent;
	bool cpuset_clone_children;
	char *name;
	/* User explicitly requested empty subsystem */
	bool none;

	struct cgroupfs_root *new_root;

};

/*
 * Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
 * array. This function takes refcounts on subsystems to be used, unless it
 * returns error, in which case no refcounts are taken.
 */
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
{
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
	unsigned long mask = (unsigned long)-1;
	bool module_pin_failed = false;
	struct cgroup_subsys *ss;
	int i;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif

	memset(opts, 0, sizeof(*opts));

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "none")) {
			/* Explicitly have no subsystems */
			opts->none = true;
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "__DEVEL__sane_behavior")) {
			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
			opts->flags |= CGRP_ROOT_NOPREFIX;
			continue;
		}
		if (!strcmp(token, "clone_children")) {
			opts->cpuset_clone_children = true;
			continue;
		}
		if (!strcmp(token, "xattr")) {
			opts->flags |= CGRP_ROOT_XATTR;
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN - 1,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;

			continue;
		}

		for_each_subsys(ss, i) {
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_mask);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
	 */
	if (all_ss || (!one_ss && !opts->none && !opts->name))
		for_each_subsys(ss, i)
			if (!ss->disabled)
				set_bit(i, &opts->subsys_mask);

	/* Consistency checks */

	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");

		if (opts->flags & CGRP_ROOT_NOPREFIX) {
			pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
			return -EINVAL;
		}

		if (opts->cpuset_clone_children) {
			pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
			return -EINVAL;
		}
	}

	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
		return -EINVAL;


	/* Can't specify "none" and some subsystems */
	if (opts->subsys_mask && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
	if (!opts->subsys_mask && !opts->name)
		return -EINVAL;

	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for_each_subsys(ss, i) {
		if (!(opts->subsys_mask & (1UL << i)))
			continue;
		if (!try_module_get(cgroup_subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= 0; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_mask))
				continue;
			module_put(cgroup_subsys[i]->module);
		}
		return -ENOENT;
	}

	return 0;
}

static void drop_parsed_module_refcounts(unsigned long subsys_mask)
{
	struct cgroup_subsys *ss;
	int i;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(ss, i)
		if (subsys_mask & (1UL << i))
			module_put(cgroup_subsys[i]->module);
	mutex_unlock(&cgroup_mutex);
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
	struct cgroup *cgrp = &root->top_cgroup;
	struct cgroup_sb_opts opts;
	unsigned long added_mask, removed_mask;

	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_err("cgroup: sane_behavior: remount is not allowed\n");
		return -EINVAL;
	}

	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
	mutex_lock(&cgroup_mutex);
	mutex_lock(&cgroup_root_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

	added_mask = opts.subsys_mask & ~root->subsys_mask;
	removed_mask = root->subsys_mask & ~opts.subsys_mask;

	/* Don't allow flags or name to change at remount */
	if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
	    (opts.name && strcmp(opts.name, root->name))) {
		pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
		       opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
		       root->flags & CGRP_ROOT_OPTION_MASK, root->name);
		ret = -EINVAL;
		goto out_unlock;
	}

	/*
	 * Clear out the files of subsystems that should be removed, do
	 * this before rebind_subsystems, since rebind_subsystems may
	 * change this hierarchy's subsys_list.
	 */
	cgroup_clear_directory(cgrp->dentry, false, removed_mask);

	ret = rebind_subsystems(root, added_mask, removed_mask);
	if (ret) {
		/* rebind_subsystems failed, re-populate the removed files */
		cgroup_populate_dir(cgrp, false, removed_mask);
		goto out_unlock;
	}

	/* re-populate subsystem files */
	cgroup_populate_dir(cgrp, false, added_mask);

	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
 out_unlock:
	kfree(opts.release_agent);
	kfree(opts.name);
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
	if (ret)
		drop_parsed_module_refcounts(opts.subsys_mask);
	return ret;
}

static const struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->files);
	INIT_LIST_HEAD(&cgrp->cset_links);
	INIT_LIST_HEAD(&cgrp->release_list);
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
	simple_xattrs_init(&cgrp->xattrs);
}

static void init_cgroup_root(struct cgroupfs_root *root)
{
	struct cgroup *cgrp = &root->top_cgroup;

	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
	cgrp->root = root;
	RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
	init_cgroup_housekeeping(cgrp);
}

static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
{
	int id;

	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
			      GFP_KERNEL);
	if (id < 0)
		return id;

	root->hierarchy_id = id;
	return 0;
}

static void cgroup_exit_root_id(struct cgroupfs_root *root)
{
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

	if (root->hierarchy_id) {
		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
		root->hierarchy_id = 0;
	}
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroup_sb_opts *opts = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;

	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_mask || opts->none)
	    && (opts->subsys_mask != root->subsys_mask))
		return 0;

	return 1;
}

static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

	if (!opts->subsys_mask && !opts->none)
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);

	/*
	 * We need to set @root->subsys_mask now so that @root can be
	 * matched by cgroup_test_super() before it finishes
	 * initialization; otherwise, competing mounts with the same
	 * options may try to bind the same subsystems instead of waiting
	 * for the first one leading to unexpected mount errors.
	 * SUBSYS_BOUND will be set once actual binding is complete.
	 */
	root->subsys_mask = opts->subsys_mask;
	root->flags = opts->flags;
	ida_init(&root->cgroup_ida);
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	if (opts->cpuset_clone_children)
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
	return root;
}

static void cgroup_free_root(struct cgroupfs_root *root)
{
	if (root) {
		/* hierarhcy ID shoulid already have been released */
		WARN_ON_ONCE(root->hierarchy_id);

		ida_destroy(&root->cgroup_ida);
		kfree(root);
	}
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

	BUG_ON(!opts->subsys_mask && !opts->none);

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
		.d_delete = cgroup_delete,
	};

	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
		return -ENOMEM;
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
	return 0;
}

static struct dentry *cgroup_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data)
{
	struct cgroup_sb_opts opts;
	struct cgroupfs_root *root;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *new_root;
	struct inode *inode;

	/* First find the desired set of subsystems */
	mutex_lock(&cgroup_mutex);
	ret = parse_cgroupfs_options(data, &opts);
	mutex_unlock(&cgroup_mutex);
	if (ret)
		goto out_err;

	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto drop_modules;
	}
	opts.new_root = new_root;

	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
	if (IS_ERR(sb)) {
		ret = PTR_ERR(sb);
		cgroup_free_root(opts.new_root);
		goto drop_modules;
	}

	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_links;
		struct cgroup *root_cgrp = &root->top_cgroup;
		struct cgroupfs_root *existing_root;
		const struct cred *cred;
		int i;
		struct css_set *cset;

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
		inode = sb->s_root->d_inode;

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
		mutex_lock(&cgroup_root_mutex);

		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;

		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
		if (ret)
			goto unlock_drop;

		/* ID 0 is reserved for dummy root, 1 for unified hierarchy */
		ret = cgroup_init_root_id(root, 2, 0);
		if (ret)
			goto unlock_drop;

		ret = rebind_subsystems(root, root->subsys_mask, 0);
		if (ret == -EBUSY) {
			free_cgrp_cset_links(&tmp_links);
			goto unlock_drop;
		}
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &cgroup_roots);
		cgroup_root_count++;

		sb->s_root->d_fsdata = root_cgrp;
		root->top_cgroup.dentry = sb->s_root;

		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
		hash_for_each(css_set_table, i, cset, hlist)
			link_css_set(&tmp_links, cset, root_cgrp);
		write_unlock(&css_set_lock);

		free_cgrp_cset_links(&tmp_links);

		BUG_ON(!list_empty(&root_cgrp->children));
		BUG_ON(root->number_of_cgroups != 1);

		cred = override_creds(&init_cred);
		cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
		revert_creds(cred);
		mutex_unlock(&cgroup_root_mutex);
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
		cgroup_free_root(opts.new_root);

		if (root->flags != opts.flags) {
			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
				pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
				ret = -EINVAL;
				goto drop_new_super;
			} else {
				pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
			}
		}

		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_mask);
	}

	kfree(opts.release_agent);
	kfree(opts.name);
	return dget(sb->s_root);

 unlock_drop:
	cgroup_exit_root_id(root);
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
 drop_new_super:
	deactivate_locked_super(sb);
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_mask);
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
	return ERR_PTR(ret);
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
	struct cgroup *cgrp = &root->top_cgroup;
	struct cgrp_cset_link *link, *tmp_link;
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
	BUG_ON(!list_empty(&cgrp->children));

	mutex_lock(&cgroup_mutex);
	mutex_lock(&cgroup_root_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
		ret = rebind_subsystems(root, 0, root->subsys_mask);
		/* Shouldn't be able to fail ... */
		BUG_ON(ret);
	}

	/*
	 * Release all the links from cset_links to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);

	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		cgroup_root_count--;
	}

	cgroup_exit_root_id(root);

	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);

	simple_xattrs_free(&cgrp->xattrs);

	kill_litter_super(sb);
	cgroup_free_root(root);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.mount = cgroup_mount,
	.kill_sb = cgroup_kill_sb,
};

static struct kobject *cgroup_kobj;

/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Writes path of cgroup into buf.  Returns 0 on success, -errno on error.
 *
 * We can't generate cgroup path using dentry->d_name, as accessing
 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
 * inode's i_mutex, while on the other hand cgroup_path() can be called
 * with some irq-safe spinlocks held.
 */
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
{
	int ret = -ENAMETOOLONG;
	char *start;

	if (!cgrp->parent) {
		if (strlcpy(buf, "/", buflen) >= buflen)
			return -ENAMETOOLONG;
		return 0;
	}

	start = buf + buflen - 1;
	*start = '\0';

	rcu_read_lock();
	do {
		const char *name = cgroup_name(cgrp);
		int len;

		len = strlen(name);
		if ((start -= len) < buf)
			goto out;
		memcpy(start, name, len);

		if (--start < buf)
			goto out;
		*start = '/';

		cgrp = cgrp->parent;
	} while (cgrp->parent);
	ret = 0;
	memmove(buf, start, buf + buflen - start);
out:
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL_GPL(cgroup_path);

/**
 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
 * @task: target task
 * @hierarchy_id: the hierarchy to look up @task's cgroup from
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
 * copy its path into @buf.  This function grabs cgroup_mutex and shouldn't
 * be used inside locks used by cgroup controller callbacks.
 */
int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
				    char *buf, size_t buflen)
{
	struct cgroupfs_root *root;
	struct cgroup *cgrp = NULL;
	int ret = -ENOENT;

	mutex_lock(&cgroup_mutex);

	root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
	if (root) {
		cgrp = task_cgroup_from_root(task, root);
		ret = cgroup_path(cgrp, buf, buflen);
	}

	mutex_unlock(&cgroup_mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);

/*
 * Control Group taskset
 */
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
	struct css_set		*cg;
};

struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * Must be called with cgroup_mutex and threadgroup locked.
 */
static void cgroup_task_migrate(struct cgroup *old_cgrp,
				struct task_struct *tsk,
				struct css_set *new_cset)
{
	struct css_set *old_cset;

	/*
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
	 */
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
	old_cset = task_css_set(tsk);

	task_lock(tsk);
	rcu_assign_pointer(tsk->cgroups, new_cset);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &new_cset->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on old_cset by taking it from the
	 * task. As trading it for new_cset is protected by cgroup_mutex,
	 * we're safe to drop it here; it will be freed under RCU.
	 */
	set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
	put_css_set(old_cset);
}

/**
 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @tsk: the task or the leader of the threadgroup to be attached
 * @threadgroup: attach the whole threadgroup?
 *
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
 * task_lock of @tsk or each thread in the threadgroup individually in turn.
 */
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
			      bool threadgroup)
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *leader = tsk;
	struct task_and_cgroup *tc;
	struct flex_array *group;
	struct cgroup_taskset tset = { };

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
	 */
	if (threadgroup)
		group_size = get_nr_threads(tsk);
	else
		group_size = 1;
	/* flex_array supports very large thread-groups better than kmalloc. */
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
	if (!group)
		return -ENOMEM;
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;

	i = 0;
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
	do {
		struct task_and_cgroup ent;

		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
		BUG_ON(retval != 0);
		i++;

		if (!threadgroup)
			break;
	} while_each_thread(leader, tsk);
	rcu_read_unlock();
	/* remember the number of threads in the array for later. */
	group_size = i;
	tset.tc_array = group;
	tset.tc_array_len = group_size;

	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
	if (!group_size)
		goto out_free_group_list;

	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_root_subsys(root, ss) {
		if (ss->can_attach) {
			retval = ss->can_attach(cgrp, &tset);
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
		struct css_set *old_cset;

		tc = flex_array_get(group, i);
		old_cset = task_css_set(tc->task);
		tc->cg = find_css_set(old_cset, cgrp);
		if (!tc->cg) {
			retval = -ENOMEM;
			goto out_put_css_set_refs;
		}
	}

	/*
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
	 */
	for (i = 0; i < group_size; i++) {
		tc = flex_array_get(group, i);
		cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
	}
	/* nothing is sensitive to fork() after this point. */

	/*
	 * step 4: do subsystem attach callbacks.
	 */
	for_each_root_subsys(root, ss) {
		if (ss->attach)
			ss->attach(cgrp, &tset);
	}

	/*
	 * step 5: success! and cleanup
	 */
	retval = 0;
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
			if (!tc->cg)
				break;
			put_css_set(tc->cg);
		}
	}
out_cancel_attach:
	if (retval) {
		for_each_root_subsys(root, ss) {
			if (ss == failed_ss)
				break;
			if (ss->cancel_attach)
				ss->cancel_attach(cgrp, &tset);
		}
	}
out_free_group_list:
	flex_array_free(group);
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
 */
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
{
	struct task_struct *tsk;
	const struct cred *cred = current_cred(), *tcred;
	int ret;

	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

retry_find_task:
	rcu_read_lock();
	if (pid) {
		tsk = find_task_by_vpid(pid);
		if (!tsk) {
			rcu_read_unlock();
			ret= -ESRCH;
			goto out_unlock_cgroup;
		}
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
		tcred = __task_cred(tsk);
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
			rcu_read_unlock();
			ret = -EACCES;
			goto out_unlock_cgroup;
		}
	} else
		tsk = current;

	if (threadgroup)
		tsk = tsk->group_leader;

	/*
	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
	}

	ret = cgroup_attach_task(cgrp, tsk, threadgroup);

	threadgroup_unlock(tsk);

	put_task_struct(tsk);
out_unlock_cgroup:
	mutex_unlock(&cgroup_mutex);
	return ret;
}

/**
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
 * @tsk: the task to be attached
 */
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
	struct cgroupfs_root *root;
	int retval = 0;

	mutex_lock(&cgroup_mutex);
	for_each_active_root(root) {
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk, false);
		if (retval)
			break;
	}
	mutex_unlock(&cgroup_mutex);

	return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);

static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
{
	return attach_task_by_pid(cgrp, tgid, true);
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	mutex_lock(&cgroup_root_mutex);
	strcpy(cgrp->root->release_agent_path, buffer);
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
	return 0;
}

/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
{
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
	if (cft->write_u64) {
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
	if (!retval)
		retval = nbytes;
	return retval;
}

static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}

	buffer[nbytes] = 0;     /* nul-terminate */
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
	if (!retval)
		retval = nbytes;
out:
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (cgroup_is_dead(cgrp))
		return -ENODEV;
	if (cft->write)
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
	return -EINVAL;
}

static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
	u64 val = cft->read_u64(cgrp, cft);
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (cgroup_is_dead(cgrp))
		return -ENODEV;

	if (cft->read)
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
	return -EINVAL;
}

/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
}

static int cgroup_seqfile_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static const struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
	.write = cgroup_file_write,
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);

	if (cft->read_map || cft->read_seq_string) {
		struct cgroup_seqfile_state *state;

		state = kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;

		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	int ret;
	struct cgroup_name *name, *old_name;
	struct cgroup *cgrp;

	/*
	 * It's convinient to use parent dir's i_mutex to protected
	 * cgrp->name.
	 */
	lockdep_assert_held(&old_dir->i_mutex);

	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;

	cgrp = __d_cgrp(old_dentry);

	/*
	 * This isn't a proper migration and its usefulness is very
	 * limited.  Disallow if sane_behavior.
	 */
	if (cgroup_sane_behavior(cgrp))
		return -EPERM;

	name = cgroup_alloc_name(new_dentry);
	if (!name)
		return -ENOMEM;

	ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
	if (ret) {
		kfree(name);
		return ret;
	}

	old_name = rcu_dereference_protected(cgrp->name, true);
	rcu_assign_pointer(cgrp->name, name);

	kfree_rcu(old_name, rcu_head);
	return 0;
}

static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
{
	if (S_ISDIR(dentry->d_inode->i_mode))
		return &__d_cgrp(dentry)->xattrs;
	else
		return &__d_cfe(dentry)->xattrs;
}

static inline int xattr_enabled(struct dentry *dentry)
{
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
	return root->flags & CGRP_ROOT_XATTR;
}

static bool is_valid_xattr(const char *name)
{
	if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
	    !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
		return true;
	return false;
}

static int cgroup_setxattr(struct dentry *dentry, const char *name,
			   const void *val, size_t size, int flags)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
}

static int cgroup_removexattr(struct dentry *dentry, const char *name)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_remove(__d_xattrs(dentry), name);
}

static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
			       void *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
}

static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	return simple_xattr_list(__d_xattrs(dentry), buf, size);
}

static const struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static const struct inode_operations cgroup_file_inode_operations = {
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
};

static const struct inode_operations cgroup_dir_inode_operations = {
	.lookup = cgroup_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
};

static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file_inode(file)->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

static int cgroup_create_file(struct dentry *dentry, umode_t mode,
				struct super_block *sb)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
		inc_nlink(dentry->d_parent->d_inode);

		/*
		 * Control reaches here with cgroup_mutex held.
		 * @inode->i_mutex should nest outside cgroup_mutex but we
		 * want to populate it immediately without releasing
		 * cgroup_mutex.  As @inode isn't visible to anyone else
		 * yet, trylock will always succeed without affecting
		 * lockdep checks.
		 */
		WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
		inode->i_op = &cgroup_file_inode_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static umode_t cgroup_file_mode(const struct cftype *cft)
{
	umode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			   struct cftype *cft)
{
	struct dentry *dir = cgrp->dentry;
	struct cgroup *parent = __d_cgrp(dir);
	struct dentry *dentry;
	struct cfent *cfe;
	int error;
	umode_t mode;
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };

	if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);

	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

	dentry = lookup_one_len(name, dir, strlen(name));
	if (IS_ERR(dentry)) {
		error = PTR_ERR(dentry);
		goto out;
	}

	cfe->type = (void *)cft;
	cfe->dentry = dentry;
	dentry->d_fsdata = cfe;
	simple_xattrs_init(&cfe->xattrs);

	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
	return error;
}

static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			      struct cftype cfts[], bool is_add)
{
	struct cftype *cft;
	int err, ret = 0;

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
		/* does cft->flags tell us to skip this file on @cgrp? */
		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
			continue;
		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
			continue;
		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
			continue;

		if (is_add) {
			err = cgroup_add_file(cgrp, subsys, cft);
			if (err)
				pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
					cft->name, err);
			ret = err;
		} else {
			cgroup_rm_file(cgrp, cft);
		}
	}
	return ret;
}

static void cgroup_cfts_prepare(void)
	__acquires(&cgroup_mutex)
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
	 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
	 * read lock before calling cgroup_addrm_files().
	 */
	mutex_lock(&cgroup_mutex);
}

static void cgroup_cfts_commit(struct cgroup_subsys *ss,
			       struct cftype *cfts, bool is_add)
	__releases(&cgroup_mutex)
{
	LIST_HEAD(pending);
	struct cgroup *cgrp, *root = &ss->root->top_cgroup;
	struct super_block *sb = ss->root->sb;
	struct dentry *prev = NULL;
	struct inode *inode;
	u64 update_before;

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
	if (!cfts || ss->root == &cgroup_dummy_root ||
	    !atomic_inc_not_zero(&sb->s_active)) {
		mutex_unlock(&cgroup_mutex);
		return;
	}

	/*
	 * All cgroups which are created after we drop cgroup_mutex will
	 * have the updated set of files, so we only need to update the
	 * cgroups created before the current @cgroup_serial_nr_next.
	 */
	update_before = cgroup_serial_nr_next;

	mutex_unlock(&cgroup_mutex);

	/* @root always needs to be updated */
	inode = root->dentry->d_inode;
	mutex_lock(&inode->i_mutex);
	mutex_lock(&cgroup_mutex);
	cgroup_addrm_files(root, ss, cfts, is_add);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);

	/* add/rm files for all cgroups created before */
	rcu_read_lock();
	cgroup_for_each_descendant_pre(cgrp, root) {
		if (cgroup_is_dead(cgrp))
			continue;

		inode = cgrp->dentry->d_inode;
		dget(cgrp->dentry);
		rcu_read_unlock();

		dput(prev);
		prev = cgrp->dentry;

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
		if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
			cgroup_addrm_files(cgrp, ss, cfts, is_add);
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

		rcu_read_lock();
	}
	rcu_read_unlock();
	dput(prev);
	deactivate_super(sb);
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
	struct cftype_set *set;

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
	cgroup_cfts_commit(ss, cfts, true);

	return 0;
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Unregister @cfts from @ss.  Files described by @cfts are removed from
 * all existing cgroups to which @ss is attached and all future cgroups
 * won't have them either.  This function can be called anytime whether @ss
 * is attached or not.
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
 * registered with @ss.
 */
int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
	struct cftype_set *set;

	cgroup_cfts_prepare();

	list_for_each_entry(set, &ss->cftsets, node) {
		if (set->cfts == cfts) {
			list_del(&set->node);
			kfree(set);
			cgroup_cfts_commit(ss, cfts, false);
			return 0;
		}
	}

	cgroup_cfts_commit(ss, NULL, false);
	return -ENOENT;
}

/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
int cgroup_task_count(const struct cgroup *cgrp)
{
	int count = 0;
	struct cgrp_cset_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cgrp->cset_links, cset_link)
		count += atomic_read(&link->cset->refcount);
	read_unlock(&css_set_lock);
	return count;
}

/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
{
	struct list_head *l = it->cset_link;
	struct cgrp_cset_link *link;
	struct css_set *cset;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
		if (l == &cgrp->cset_links) {
			it->cset_link = NULL;
			return;
		}
		link = list_entry(l, struct cgrp_cset_link, cset_link);
		cset = link->cset;
	} while (list_empty(&cset->tasks));
	it->cset_link = l;
	it->task = cset->tasks.next;
}

/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
static void cgroup_enable_task_cg_lists(void)
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		task_lock(p);
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
			list_add(&p->cg_list, &task_css_set(p)->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	read_unlock(&tasklist_lock);
	write_unlock(&css_set_lock);
}

/**
 * cgroup_next_sibling - find the next sibling of a given cgroup
 * @pos: the current cgroup
 *
 * This function returns the next sibling of @pos and should be called
 * under RCU read lock.  The only requirement is that @pos is accessible.
 * The next sibling is guaranteed to be returned regardless of @pos's
 * state.
 */
struct cgroup *cgroup_next_sibling(struct cgroup *pos)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/*
	 * @pos could already have been removed.  Once a cgroup is removed,
	 * its ->sibling.next is no longer updated when its next sibling
	 * changes.  As CGRP_DEAD assertion is serialized and happens
	 * before the cgroup is taken off the ->sibling list, if we see it
	 * unasserted, it's guaranteed that the next sibling hasn't
	 * finished its grace period even if it's already removed, and thus
	 * safe to dereference from this RCU critical section.  If
	 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
	 * to be visible as %true here.
	 */
	if (likely(!cgroup_is_dead(pos))) {
		next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
		if (&next->sibling != &pos->parent->children)
			return next;
		return NULL;
	}

	/*
	 * Can't dereference the next pointer.  Each cgroup is given a
	 * monotonically increasing unique serial number and always
	 * appended to the sibling list, so the next one can be found by
	 * walking the parent's children until we see a cgroup with higher
	 * serial number than @pos's.
	 *
	 * While this path can be slow, it's taken only when either the
	 * current cgroup is removed or iteration and removal race.
	 */
	list_for_each_entry_rcu(next, &pos->parent->children, sibling)
		if (next->serial_nr > pos->serial_nr)
			return next;
	return NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_sibling);

/**
 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
 * @pos: the current position (%NULL to initiate traversal)
 * @cgroup: cgroup whose descendants to walk
 *
 * To be used by cgroup_for_each_descendant_pre().  Find the next
 * descendant to visit for pre-order traversal of @cgroup's descendants.
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
 */
struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
					  struct cgroup *cgroup)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/* if first iteration, pretend we just visited @cgroup */
	if (!pos)
		pos = cgroup;

	/* visit the first child if exists */
	next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
	if (next)
		return next;

	/* no child, visit my or the closest ancestor's next sibling */
	while (pos != cgroup) {
		next = cgroup_next_sibling(pos);
		if (next)
			return next;
		pos = pos->parent;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);

/**
 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
 * @pos: cgroup of interest
 *
 * Return the rightmost descendant of @pos.  If there's no descendant,
 * @pos is returned.  This can be used during pre-order traversal to skip
 * subtree of @pos.
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct rightmost descendant as long as @pos is
 * accessible.
 */
struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
{
	struct cgroup *last, *tmp;

	WARN_ON_ONCE(!rcu_read_lock_held());

	do {
		last = pos;
		/* ->prev isn't RCU safe, walk ->next till the end */
		pos = NULL;
		list_for_each_entry_rcu(tmp, &last->children, sibling)
			pos = tmp;
	} while (pos);

	return last;
}
EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);

static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
{
	struct cgroup *last;

	do {
		last = pos;
		pos = list_first_or_null_rcu(&pos->children, struct cgroup,
					     sibling);
	} while (pos);

	return last;
}

/**
 * cgroup_next_descendant_post - find the next descendant for post-order walk
 * @pos: the current position (%NULL to initiate traversal)
 * @cgroup: cgroup whose descendants to walk
 *
 * To be used by cgroup_for_each_descendant_post().  Find the next
 * descendant to visit for post-order traversal of @cgroup's descendants.
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
 */
struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
					   struct cgroup *cgroup)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/* if first iteration, visit the leftmost descendant */
	if (!pos) {
		next = cgroup_leftmost_descendant(cgroup);
		return next != cgroup ? next : NULL;
	}

	/* if there's an unvisited sibling, visit its leftmost descendant */
	next = cgroup_next_sibling(pos);
	if (next)
		return cgroup_leftmost_descendant(next);

	/* no sibling left, visit parent */
	next = pos->parent;
	return next != cgroup ? next : NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);

void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
	__acquires(css_set_lock)
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

	read_lock(&css_set_lock);
	it->cset_link = &cgrp->cset_links;
	cgroup_advance_iter(cgrp, it);
}

struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
	struct cgrp_cset_link *link;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cset_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
	if (l == &link->cset->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
		cgroup_advance_iter(cgrp, it);
	} else {
		it->task = l;
	}
	return res;
}

void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
	__releases(css_set_lock)
{
	read_unlock(&css_set_lock);
}

static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
			struct task_struct *q = heap->ptrs[i];
			if (i == 0) {
				latest_time = q->start_time;
				latest_task = q;
			}
			/* Process the task per the caller's callback */
			scan->process_task(q, scan);
			put_task_struct(q);
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

static void cgroup_transfer_one_task(struct task_struct *task,
				     struct cgroup_scanner *scan)
{
	struct cgroup *new_cgroup = scan->data;

	mutex_lock(&cgroup_mutex);
	cgroup_attach_task(new_cgroup, task, false);
	mutex_unlock(&cgroup_mutex);
}

/**
 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
 * @to: cgroup to which the tasks will be moved
 * @from: cgroup in which the tasks currently reside
 */
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
	struct cgroup_scanner scan;

	scan.cg = from;
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cgroup_transfer_one_task;
	scan.heap = NULL;
	scan.data = to;

	return cgroup_scan_tasks(&scan);
}

/*
 * Stuff for reading the 'tasks'/'procs' files.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}

/*
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * Returns the number of unique elements.
 */
static int pidlist_uniq(pid_t *list, int length)
{
	int src, dest = 1;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
	struct pid_namespace *ns = task_active_pid_ns(current);

	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
	l->key.ns = get_pid_ns(ns);
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
	struct cgroup_iter it;
	struct task_struct *tsk;
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
	array = pidlist_allocate(length);
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
		if (unlikely(n == length))
			break;
		/* get tgid or pid for procs or tasks file respectively */
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
	}
	cgroup_iter_end(cgrp, &it);
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
	if (type == CGROUP_FILE_PROCS)
		length = pidlist_uniq(array, length);
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
		pidlist_free(array);
		return -ENOMEM;
	}
	/* store array, freeing old if necessary - lock already held */
	pidlist_free(l->list);
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
	*lp = l;
	return 0;
}

/**
 * cgroupstats_build - build and fill cgroupstats
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
	struct cgroup *cgrp;
	struct cgroup_iter it;
	struct task_struct *tsk;

	/*
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
	 */
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
		 goto err;

	ret = 0;
	cgrp = dentry->d_fsdata;

	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
	cgroup_iter_end(cgrp, &it);

err:
	return ret;
}


/*
 * seq_file methods for the tasks/procs files. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->l->list array.
 */

static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
{
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup_pidlist *l = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&l->mutex);
	if (pid) {
		int end = l->length;

		while (index < end) {
			int mid = (index + end) / 2;
			if (l->list[mid] == pid) {
				index = mid;
				break;
			} else if (l->list[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= l->length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = l->list + index;
	*pos = *iter;
	return iter;
}

static void cgroup_pidlist_stop(struct seq_file *s, void *v)
{
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
}

static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_pidlist_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}

/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
};

static void cgroup_release_pid_array(struct cgroup_pidlist *l)
{
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
		pidlist_free(l->list);
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
	}
	mutex_unlock(&l->owner->pidlist_mutex);
	up_write(&l->mutex);
}

static int cgroup_pidlist_release(struct inode *inode, struct file *file)
{
	struct cgroup_pidlist *l;
	if (!(file->f_mode & FMODE_READ))
		return 0;
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
	return seq_release(inode, file);
}

static const struct file_operations cgroup_pidlist_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_pidlist_release,
};

/*
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
 */
/* helper function for the two below it */
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
	struct cgroup_pidlist *l;
	int retval;

	/* Nothing to do for write-only files */
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/* have the array populated */
	retval = pidlist_array_load(cgrp, type, &l);
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;

	retval = seq_open(file, &cgroup_pidlist_seq_operations);
	if (retval) {
		cgroup_release_pid_array(l);
		return retval;
	}
	((struct seq_file *)file->private_data)->private = l;
	return 0;
}
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
}

static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
					    struct cftype *cft)
{
	return notify_on_release(cgrp);
}

static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

/*
 * When dput() is called asynchronously, if umount has been done and
 * then deactivate_super() in cgroup_free_fn() kills the superblock,
 * there's a small window that vfs will see the root dentry with non-zero
 * refcnt and trigger BUG().
 *
 * That's why we hold a reference before dput() and drop it right after.
 */
static void cgroup_dput(struct cgroup *cgrp)
{
	struct super_block *sb = cgrp->root->sb;

	atomic_inc(&sb->s_active);
	dput(cgrp->dentry);
	deactivate_super(sb);
}

/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	remove_wait_queue(event->wqh, &event->wait);

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
	cgroup_dput(cgrp);
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
		spin_lock(&cgrp->event_list_lock);
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
		spin_unlock(&cgrp->event_list_lock);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	struct cgroup *cgrp_cfile;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile), MAY_READ);
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	/*
	 * The file to be monitored must be in the same cgroup as
	 * cgroup.event_control is.
	 */
	cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
	if (cgrp_cfile != cgrp) {
		ret = -EINVAL;
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	efile->f_op->poll(efile, &event->pt);

	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

static struct cftype cgroup_base_files[] = {
	{
		.name = "cgroup.procs",
		.open = cgroup_procs_open,
		.write_u64 = cgroup_procs_write,
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO | S_IWUSR,
	},
	{
		.name = "cgroup.event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
	{
		.name = "cgroup.clone_children",
		.flags = CFTYPE_INSANE,
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
	{
		.name = "cgroup.sane_behavior",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_sane_behavior_show,
	},

	/*
	 * Historical crazy stuff.  These don't have "cgroup."  prefix and
	 * don't exist if sane_behavior.  If you're depending on these, be
	 * prepared to be burned.
	 */
	{
		.name = "tasks",
		.flags = CFTYPE_INSANE,		/* use "procs" instead */
		.open = cgroup_tasks_open,
		.write_u64 = cgroup_tasks_write,
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO | S_IWUSR,
	},
	{
		.name = "notify_on_release",
		.flags = CFTYPE_INSANE,
		.read_u64 = cgroup_read_notify_on_release,
		.write_u64 = cgroup_write_notify_on_release,
	},
	{
		.name = "release_agent",
		.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_release_agent_show,
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
	{ }	/* terminate */
};

/**
 * cgroup_populate_dir - selectively creation of files in a directory
 * @cgrp: target cgroup
 * @base_files: true if the base files should be added
 * @subsys_mask: mask of the subsystem ids whose files should be added
 */
static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
			       unsigned long subsys_mask)
{
	int err;
	struct cgroup_subsys *ss;

	if (base_files) {
		err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
		if (err < 0)
			return err;
	}

	/* process cftsets of each subsystem */
	for_each_root_subsys(cgrp->root, ss) {
		struct cftype_set *set;
		if (!test_bit(ss->subsys_id, &subsys_mask))
			continue;

		list_for_each_entry(set, &ss->cftsets, node)
			cgroup_addrm_files(cgrp, ss, set->cfts, true);
	}

	/* This cgroup is ready now */
	for_each_root_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		struct css_id *id = rcu_dereference_protected(css->id, true);

		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (id)
			rcu_assign_pointer(id->css, css);
	}

	return 0;
}

static void css_dput_fn(struct work_struct *work)
{
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, dput_work);

	cgroup_dput(css->cgroup);
}

static void css_release(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

	schedule_work(&css->dput_work);
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
			       struct cgroup *cgrp)
{
	css->cgroup = cgrp;
	css->flags = 0;
	css->id = NULL;
	if (cgrp == cgroup_dummy_top)
		css->flags |= CSS_ROOT;
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;

	/*
	 * css holds an extra ref to @cgrp->dentry which is put on the last
	 * css_put().  dput() requires process context, which css_put() may
	 * be called without.  @css->dput_work will be used to invoke
	 * dput() asynchronously from css_put().
	 */
	INIT_WORK(&css->dput_work, css_dput_fn);
}

/* invoke ->post_create() on a new CSS and mark it online if successful */
static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
	int ret = 0;

	lockdep_assert_held(&cgroup_mutex);

	if (ss->css_online)
		ret = ss->css_online(cgrp);
	if (!ret)
		cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
	return ret;
}

/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
{
	struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];

	lockdep_assert_held(&cgroup_mutex);

	if (!(css->flags & CSS_ONLINE))
		return;

	if (ss->css_offline)
		ss->css_offline(cgrp);

	cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
}

/*
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
 *
 * Must be called with the mutex on the parent inode held
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     umode_t mode)
{
	struct cgroup *cgrp;
	struct cgroup_name *name;
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

	/* allocate the cgroup and its ID, 0 is reserved for the root */
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
		return -ENOMEM;

	name = cgroup_alloc_name(dentry);
	if (!name)
		goto err_free_cgrp;
	rcu_assign_pointer(cgrp->name, name);

	cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
	if (cgrp->id < 0)
		goto err_free_name;

	/*
	 * Only live parents can have children.  Note that the liveliness
	 * check isn't strictly necessary because cgroup_mkdir() and
	 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
	 * anyway so that locking is contained inside cgroup proper and we
	 * don't get nasty surprises if we ever grow another caller.
	 */
	if (!cgroup_lock_live_group(parent)) {
		err = -ENODEV;
		goto err_free_id;
	}

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	init_cgroup_housekeeping(cgrp);

	dentry->d_fsdata = cgrp;
	cgrp->dentry = dentry;

	cgrp->parent = parent;
	cgrp->root = parent->root;

	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);

	for_each_root_subsys(root, ss) {
		struct cgroup_subsys_state *css;

		css = ss->css_alloc(cgrp);
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_free_all;
		}

		err = percpu_ref_init(&css->refcnt, css_release);
		if (err)
			goto err_free_all;

		init_cgroup_css(css, ss, cgrp);

		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
				goto err_free_all;
		}
	}

	/*
	 * Create directory.  cgroup_create_file() returns with the new
	 * directory locked on success so that it can be populated without
	 * dropping cgroup_mutex.
	 */
	err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
	if (err < 0)
		goto err_free_all;
	lockdep_assert_held(&dentry->d_inode->i_mutex);

	cgrp->serial_nr = cgroup_serial_nr_next++;

	/* allocation complete, commit to creation */
	list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
	root->number_of_cgroups++;

	/* each css holds a ref to the cgroup's dentry */
	for_each_root_subsys(root, ss)
		dget(dentry);

	/* hold a ref to the parent's dentry */
	dget(parent->dentry);

	/* creation succeeded, notify subsystems */
	for_each_root_subsys(root, ss) {
		err = online_css(ss, cgrp);
		if (err)
			goto err_destroy;

		if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
		    parent->parent) {
			pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
				   current->comm, current->pid, ss->name);
			if (!strcmp(ss->name, "memory"))
				pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
			ss->warned_broken_hierarchy = true;
		}
	}

	err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
	if (err)
		goto err_destroy;

	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);

	return 0;

err_free_all:
	for_each_root_subsys(root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];

		if (css) {
			percpu_ref_cancel_init(&css->refcnt);
			ss->css_free(cgrp);
		}
	}
	mutex_unlock(&cgroup_mutex);
	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);
err_free_id:
	ida_simple_remove(&root->cgroup_ida, cgrp->id);
err_free_name:
	kfree(rcu_dereference_raw(cgrp->name));
err_free_cgrp:
	kfree(cgrp);
	return err;

err_destroy:
	cgroup_destroy_locked(cgrp);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&dentry->d_inode->i_mutex);
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

static void cgroup_css_killed(struct cgroup *cgrp)
{
	if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
		return;

	/* percpu ref's of all css's are killed, kick off the next step */
	INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
	schedule_work(&cgrp->destroy_work);
}

static void css_ref_killed_fn(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

	cgroup_css_killed(css->cgroup);
}

/**
 * cgroup_destroy_locked - the first stage of cgroup destruction
 * @cgrp: cgroup to be destroyed
 *
 * css's make use of percpu refcnts whose killing latency shouldn't be
 * exposed to userland and are RCU protected.  Also, cgroup core needs to
 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
 * invoked.  To satisfy all the requirements, destruction is implemented in
 * the following two steps.
 *
 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
 *     userland visible parts and start killing the percpu refcnts of
 *     css's.  Set up so that the next stage will be kicked off once all
 *     the percpu refcnts are confirmed to be killed.
 *
 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
 *     rest of destruction.  Once all cgroup references are gone, the
 *     cgroup is RCU-freed.
 *
 * This function implements s1.  After this step, @cgrp is gone as far as
 * the userland is concerned and a new cgroup with the same name may be
 * created.  As cgroup doesn't care about the names internally, this
 * doesn't cause any problem.
 */
static int cgroup_destroy_locked(struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
{
	struct dentry *d = cgrp->dentry;
	struct cgroup_event *event, *tmp;
	struct cgroup_subsys *ss;
	bool empty;

	lockdep_assert_held(&d->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

	/*
	 * css_set_lock synchronizes access to ->cset_links and prevents
	 * @cgrp from being removed while __put_css_set() is in progress.
	 */
	read_lock(&css_set_lock);
	empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
	read_unlock(&css_set_lock);
	if (!empty)
		return -EBUSY;

	/*
	 * Block new css_tryget() by killing css refcnts.  cgroup core
	 * guarantees that, by the time ->css_offline() is invoked, no new
	 * css reference will be given out via css_tryget().  We can't
	 * simply call percpu_ref_kill() and proceed to offlining css's
	 * because percpu_ref_kill() doesn't guarantee that the ref is seen
	 * as killed on all CPUs on return.
	 *
	 * Use percpu_ref_kill_and_confirm() to get notifications as each
	 * css is confirmed to be seen as killed on all CPUs.  The
	 * notification callback keeps track of the number of css's to be
	 * killed and schedules cgroup_offline_fn() to perform the rest of
	 * destruction once the percpu refs of all css's are confirmed to
	 * be killed.
	 */
	atomic_set(&cgrp->css_kill_cnt, 1);
	for_each_root_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];

		/*
		 * Killing would put the base ref, but we need to keep it
		 * alive until after ->css_offline.
		 */
		percpu_ref_get(&css->refcnt);

		atomic_inc(&cgrp->css_kill_cnt);
		percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
	}
	cgroup_css_killed(cgrp);

	/*
	 * Mark @cgrp dead.  This prevents further task migration and child
	 * creation by disabling cgroup_lock_live_group().  Note that
	 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
	 * resume iteration after dropping RCU read lock.  See
	 * cgroup_next_sibling() for details.
	 */
	set_bit(CGRP_DEAD, &cgrp->flags);

	/* CGRP_DEAD is set, remove from ->release_list for the last time */
	raw_spin_lock(&release_list_lock);
	if (!list_empty(&cgrp->release_list))
		list_del_init(&cgrp->release_list);
	raw_spin_unlock(&release_list_lock);

	/*
	 * Remove @cgrp directory.  The removal puts the base ref but we
	 * aren't quite done with @cgrp yet, so hold onto it.
	 */
	dget(d);
	cgroup_d_remove_dir(d);

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

	return 0;
};

/**
 * cgroup_offline_fn - the second step of cgroup destruction
 * @work: cgroup->destroy_free_work
 *
 * This function is invoked from a work item for a cgroup which is being
 * destroyed after the percpu refcnts of all css's are guaranteed to be
 * seen as killed on all CPUs, and performs the rest of destruction.  This
 * is the second step of destruction described in the comment above
 * cgroup_destroy_locked().
 */
static void cgroup_offline_fn(struct work_struct *work)
{
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
	struct cgroup *parent = cgrp->parent;
	struct dentry *d = cgrp->dentry;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);

	/*
	 * css_tryget() is guaranteed to fail now.  Tell subsystems to
	 * initate destruction.
	 */
	for_each_root_subsys(cgrp->root, ss)
		offline_css(ss, cgrp);

	/*
	 * Put the css refs from cgroup_destroy_locked().  Each css holds
	 * an extra reference to the cgroup's dentry and cgroup removal
	 * proceeds regardless of css refs.  On the last put of each css,
	 * whenever that may be, the extra dentry ref is put so that dentry
	 * destruction happens only after all css's are released.
	 */
	for_each_root_subsys(cgrp->root, ss)
		css_put(cgrp->subsys[ss->subsys_id]);

	/* delete this cgroup from parent->children */
	list_del_rcu(&cgrp->sibling);

	dput(d);

	set_bit(CGRP_RELEASABLE, &parent->flags);
	check_for_release(parent);

	mutex_unlock(&cgroup_mutex);
}

static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	int ret;

	mutex_lock(&cgroup_mutex);
	ret = cgroup_destroy_locked(dentry->d_fsdata);
	mutex_unlock(&cgroup_mutex);

	return ret;
}

static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);

	mutex_lock(&cgroup_mutex);

	/* init base cftset */
	cgroup_init_cftsets(ss);

	/* Create the top cgroup state for this subsystem */
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
	css = ss->css_alloc(cgroup_dummy_top);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, cgroup_dummy_top);

	/* Update the init_css_set to contain a subsys
	 * pointer to this state - since the subsystem is
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = css;

	need_forkexit_callback |= ss->fork || ss->exit;

	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

	BUG_ON(online_css(ss, cgroup_dummy_top));

	mutex_unlock(&cgroup_mutex);

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
 * subsystem is built as a module, it will be assigned a new subsys_id and set
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;
	int i, ret;
	struct hlist_node *tmp;
	struct css_set *cset;
	unsigned long key;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->css_alloc == NULL || ss->css_free == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a sanity check */
		BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
		return 0;
	}

	/* init base cftset */
	cgroup_init_cftsets(ss);

	mutex_lock(&cgroup_mutex);
	cgroup_subsys[ss->subsys_id] = ss;

	/*
	 * no ss->css_alloc seems to need anything important in the ss
	 * struct, so this can happen first (i.e. before the dummy root
	 * attachment).
	 */
	css = ss->css_alloc(cgroup_dummy_top);
	if (IS_ERR(css)) {
		/* failure case - need to deassign the cgroup_subsys[] slot. */
		cgroup_subsys[ss->subsys_id] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, cgroup_dummy_top);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		ret = cgroup_init_idr(ss, css);
		if (ret)
			goto err_unload;
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
		/* skip entries that we already rehashed */
		if (cset->subsys[ss->subsys_id])
			continue;
		/* remove existing entry */
		hash_del(&cset->hlist);
		/* set new value */
		cset->subsys[ss->subsys_id] = css;
		/* recompute hash and restore entry */
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
	}
	write_unlock(&css_set_lock);

	ret = online_css(ss, cgroup_dummy_top);
	if (ret)
		goto err_unload;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;

err_unload:
	mutex_unlock(&cgroup_mutex);
	/* @ss can't be mounted here as try_module_get() would fail */
	cgroup_unload_subsys(ss);
	return ret;
}
EXPORT_SYMBOL_GPL(cgroup_load_subsys);

/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cgrp_cset_link *link;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &cgroup_dummy_root);

	mutex_lock(&cgroup_mutex);

	offline_css(ss, cgroup_dummy_top);

	if (ss->use_id)
		idr_destroy(&ss->idr);

	/* deassign the subsys_id */
	cgroup_subsys[ss->subsys_id] = NULL;

	/* remove subsystem from the dummy root's list of subsystems */
	list_del_init(&ss->sibling);

	/*
	 * disentangle the css from all css_sets attached to the dummy
	 * top. as in loading, we need to pay our respects to the hashtable
	 * gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
		struct css_set *cset = link->cset;
		unsigned long key;

		hash_del(&cset->hlist);
		cset->subsys[ss->subsys_id] = NULL;
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the cgroup_dummy_top and free it -
	 * need to free before marking as null because ss->css_free needs
	 * the cgrp->subsys pointer to find their state. note that this
	 * also takes care of freeing the css_id.
	 */
	ss->css_free(cgroup_dummy_top);
	cgroup_dummy_top->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

/**
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
 */
int __init cgroup_init_early(void)
{
	struct cgroup_subsys *ss;
	int i;

	atomic_set(&init_css_set.refcount, 1);
	INIT_LIST_HEAD(&init_css_set.cgrp_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
	INIT_HLIST_NODE(&init_css_set.hlist);
	css_set_count = 1;
	init_cgroup_root(&cgroup_dummy_root);
	cgroup_root_count = 1;
	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);

	init_cgrp_cset_link.cset = &init_css_set;
	init_cgrp_cset_link.cgrp = cgroup_dummy_top;
	list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
	list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);

	/* at bootup time, we don't worry about modular subsystems */
	for_each_builtin_subsys(ss, i) {
		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->css_alloc);
		BUG_ON(!ss->css_free);
		if (ss->subsys_id != i) {
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
 */
int __init cgroup_init(void)
{
	struct cgroup_subsys *ss;
	unsigned long key;
	int i, err;

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;

	for_each_builtin_subsys(ss, i) {
		if (!ss->early_init)
			cgroup_init_subsys(ss);
		if (ss->use_id)
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
	}

	/* allocate id for the dummy hierarchy */
	mutex_lock(&cgroup_mutex);
	mutex_lock(&cgroup_root_mutex);

	/* Add init_css_set to the hash table */
	key = css_set_hash(init_css_set.subsys);
	hash_add(css_set_table, &init_css_set.hlist, key);

	BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));

	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

	err = register_filesystem(&cgroup_fs_type);
	if (err < 0) {
		kobject_put(cgroup_kobj);
		goto out;
	}

	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);

out:
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

	return err;
}

/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_active_root(root) {
		struct cgroup_subsys *ss;
		struct cgroup *cgrp;
		int count = 0;

		seq_printf(m, "%d:", root->hierarchy_id);
		for_each_root_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
		seq_putc(m, ':');
		cgrp = task_cgroup_from_root(tsk, root);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	struct cgroup_subsys *ss;
	int i;

	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
	mutex_lock(&cgroup_mutex);

	for_each_subsys(ss, i)
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
			   ss->root->number_of_cgroups, !ss->disabled);

	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_cgroupstats_show, NULL);
}

static const struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
 * @child: pointer to task_struct of forking parent process.
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
	task_lock(current);
	get_css_set(task_css_set(current));
	child->cgroups = current->cgroups;
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
}

/**
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary and
 * call the subsystem fork() callbacks.  Has to be after the task is
 * visible on the task list in case we race with the first call to
 * cgroup_iter_start() - to guarantee that the new task ends up on its
 * list.
 */
void cgroup_post_fork(struct task_struct *child)
{
	struct cgroup_subsys *ss;
	int i;

	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		task_lock(child);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &task_css_set(child)->tasks);
		task_unlock(child);
		write_unlock(&css_set_lock);
	}

	/*
	 * Call ss->fork().  This must happen after @child is linked on
	 * css_set; otherwise, @child might change state between ->fork()
	 * and addition to css_set.
	 */
	if (need_forkexit_callback) {
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, and the builtin section of the subsys
		 * array is immutable, so we don't need to lock the
		 * subsys array here. On the other hand, modular section
		 * of the array can be freed at module unload, so we
		 * can't touch that.
		 */
		for_each_builtin_subsys(ss, i)
			if (ss->fork)
				ss->fork(child);
	}
}

/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
 * @run_callback: run exit callbacks?
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	struct cgroup_subsys *ss;
	struct css_set *cset;
	int i;

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del_init(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
	cset = task_css_set(tsk);
	RCU_INIT_POINTER(tsk->cgroups, &init_css_set);

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, see cgroup_post_fork() for details.
		 */
		for_each_builtin_subsys(ss, i) {
			if (ss->exit) {
				struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);

				ss->exit(cgrp, old_cgrp, tsk);
			}
		}
	}
	task_unlock(tsk);

	put_css_set_taskexit(cset);
}

static void check_for_release(struct cgroup *cgrp)
{
	if (cgroup_is_releasable(cgrp) &&
	    list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
		/*
		 * Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now
		 */
		int need_schedule_work = 0;

		raw_spin_lock(&release_list_lock);
		if (!cgroup_is_dead(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
			need_schedule_work = 1;
		}
		raw_spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	raw_spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
		char *pathbuf = NULL, *agentbuf = NULL;
		struct cgroup *cgrp = list_entry(release_list.next,
						    struct cgroup,
						    release_list);
		list_del_init(&cgrp->release_list);
		raw_spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;

		i = 0;
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
		raw_spin_lock(&release_list_lock);
	}
	raw_spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}

static int __init cgroup_disable(char *str)
{
	struct cgroup_subsys *ss;
	char *token;
	int i;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		/*
		 * cgroup_disable, being at boot time, can't know about
		 * module subsystems, so we don't worry about them.
		 */
		for_each_builtin_subsys(ss, i) {
			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);

/*
 * Functons for CSS ID.
 */

/* to get ID other than 0, this should be called when !cgroup_is_dead() */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
	cssid = rcu_dereference_raw(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}
EXPORT_SYMBOL_GPL(css_id);

/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 * this function reads css->id, the caller must hold rcu_read_lock().
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

bool css_is_ancestor(struct cgroup_subsys_state *child,
		    const struct cgroup_subsys_state *root)
{
	struct css_id *child_id;
	struct css_id *root_id;

	child_id  = rcu_dereference(child->id);
	if (!child_id)
		return false;
	root_id = rcu_dereference(root->id);
	if (!root_id)
		return false;
	if (child_id->depth < root_id->depth)
		return false;
	if (child_id->stack[root_id->depth] != root_id->id)
		return false;
	return true;
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = rcu_dereference_protected(css->id, true);

	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	kfree_rcu(id, rcu_head);
}
EXPORT_SYMBOL_GPL(free_css_id);

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int ret, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);

	idr_preload(GFP_KERNEL);
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
	spin_unlock(&ss->id_lock);
	idr_preload_end();

	/* Returns error when there are no free spaces for new ID.*/
	if (ret < 0)
		goto err_out;

	newid->id = ret;
	newid->depth = depth;
	return newid;
err_out:
	kfree(newid);
	return ERR_PTR(ret);

}

static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
{
	struct css_id *newid;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	RCU_INIT_POINTER(newid->css, rootcss);
	RCU_INIT_POINTER(rootcss->id, newid);
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = rcu_dereference_protected(parent_css->id, true);
	depth = parent_id->depth + 1;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
EXPORT_SYMBOL_GPL(css_lookup);

/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = file_inode(f);
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_css_free(struct cgroup *cgrp)
{
	kfree(cgrp->subsys[debug_subsys_id]);
}

static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
{
	return cgroup_task_count(cgrp);
}

static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cgrp,
					 struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&task_css_set(current)->refcount);
	rcu_read_unlock();
	return count;
}

static int current_css_set_cg_links_read(struct cgroup *cgrp,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cgrp_cset_link *link;
	struct css_set *cset;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cset = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cgrp,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cgrp_cset_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cgrp->cset_links, cset_link) {
		struct css_set *cset = link->cset;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cset);
		list_for_each_entry(task, &cset->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

	{ }	/* terminate */
};

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.css_alloc = debug_css_alloc,
	.css_free = debug_css_free,
	.subsys_id = debug_subsys_id,
	.base_cftypes = debug_files,
};
#endif /* CONFIG_CGROUP_DEBUG */