1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
/*
* This file implements VFS file and inode operations for regular files, device
* nodes and symlinks as well as address space operations.
*
* UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
* the page is dirty and is used for optimization purposes - dirty pages are
* not budgeted so the flag shows that 'ubifs_write_end()' should not release
* the budget for this page. The @PG_checked flag is set if full budgeting is
* required for the page e.g., when it corresponds to a file hole or it is
* beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
* it is OK to fail in this function, and the budget is released in
* 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
* information about how the page was budgeted, to make it possible to release
* the budget properly.
*
* A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
* implement. However, this is not true for 'ubifs_writepage()', which may be
* called with @i_mutex unlocked. For example, when flusher thread is doing
* background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
* At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
* in the "sys_write -> alloc_pages -> direct reclaim path". So, in
* 'ubifs_writepage()' we are only guaranteed that the page is locked.
*
* Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
* read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
* ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
* set as well. However, UBIFS disables readahead.
*/
#include "ubifs.h"
#include <linux/mount.h>
#include <linux/slab.h>
#include <linux/migrate.h>
static int read_block(struct inode *inode, void *addr, unsigned int block,
struct ubifs_data_node *dn)
{
struct ubifs_info *c = inode->i_sb->s_fs_info;
int err, len, out_len;
union ubifs_key key;
unsigned int dlen;
data_key_init(c, &key, inode->i_ino, block);
err = ubifs_tnc_lookup(c, &key, dn);
if (err) {
if (err == -ENOENT)
/* Not found, so it must be a hole */
memset(addr, 0, UBIFS_BLOCK_SIZE);
return err;
}
ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
ubifs_inode(inode)->creat_sqnum);
len = le32_to_cpu(dn->size);
if (len <= 0 || len > UBIFS_BLOCK_SIZE)
goto dump;
dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
if (ubifs_crypt_is_encrypted(inode)) {
err = ubifs_decrypt(inode, dn, &dlen, block);
if (err)
goto dump;
}
out_len = UBIFS_BLOCK_SIZE;
err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
le16_to_cpu(dn->compr_type));
if (err || len != out_len)
goto dump;
/*
* Data length can be less than a full block, even for blocks that are
* not the last in the file (e.g., as a result of making a hole and
* appending data). Ensure that the remainder is zeroed out.
*/
if (len < UBIFS_BLOCK_SIZE)
memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
return 0;
dump:
ubifs_err(c, "bad data node (block %u, inode %lu)",
block, inode->i_ino);
ubifs_dump_node(c, dn);
return -EINVAL;
}
static int do_readpage(struct page *page)
{
void *addr;
int err = 0, i;
unsigned int block, beyond;
struct ubifs_data_node *dn;
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
loff_t i_size = i_size_read(inode);
dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
inode->i_ino, page->index, i_size, page->flags);
ubifs_assert(c, !PageChecked(page));
ubifs_assert(c, !PagePrivate(page));
addr = kmap(page);
block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
if (block >= beyond) {
/* Reading beyond inode */
SetPageChecked(page);
memset(addr, 0, PAGE_SIZE);
goto out;
}
dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
if (!dn) {
err = -ENOMEM;
goto error;
}
i = 0;
while (1) {
int ret;
if (block >= beyond) {
/* Reading beyond inode */
err = -ENOENT;
memset(addr, 0, UBIFS_BLOCK_SIZE);
} else {
ret = read_block(inode, addr, block, dn);
if (ret) {
err = ret;
if (err != -ENOENT)
break;
} else if (block + 1 == beyond) {
int dlen = le32_to_cpu(dn->size);
int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
if (ilen && ilen < dlen)
memset(addr + ilen, 0, dlen - ilen);
}
}
if (++i >= UBIFS_BLOCKS_PER_PAGE)
break;
block += 1;
addr += UBIFS_BLOCK_SIZE;
}
if (err) {
struct ubifs_info *c = inode->i_sb->s_fs_info;
if (err == -ENOENT) {
/* Not found, so it must be a hole */
SetPageChecked(page);
dbg_gen("hole");
goto out_free;
}
ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
page->index, inode->i_ino, err);
goto error;
}
out_free:
kfree(dn);
out:
SetPageUptodate(page);
ClearPageError(page);
flush_dcache_page(page);
kunmap(page);
return 0;
error:
kfree(dn);
ClearPageUptodate(page);
SetPageError(page);
flush_dcache_page(page);
kunmap(page);
return err;
}
/**
* release_new_page_budget - release budget of a new page.
* @c: UBIFS file-system description object
*
* This is a helper function which releases budget corresponding to the budget
* of one new page of data.
*/
static void release_new_page_budget(struct ubifs_info *c)
{
struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
ubifs_release_budget(c, &req);
}
/**
* release_existing_page_budget - release budget of an existing page.
* @c: UBIFS file-system description object
*
* This is a helper function which releases budget corresponding to the budget
* of changing one one page of data which already exists on the flash media.
*/
static void release_existing_page_budget(struct ubifs_info *c)
{
struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
ubifs_release_budget(c, &req);
}
static int write_begin_slow(struct address_space *mapping,
loff_t pos, unsigned len, struct page **pagep,
unsigned flags)
{
struct inode *inode = mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
pgoff_t index = pos >> PAGE_SHIFT;
struct ubifs_budget_req req = { .new_page = 1 };
int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
struct page *page;
dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
inode->i_ino, pos, len, inode->i_size);
/*
* At the slow path we have to budget before locking the page, because
* budgeting may force write-back, which would wait on locked pages and
* deadlock if we had the page locked. At this point we do not know
* anything about the page, so assume that this is a new page which is
* written to a hole. This corresponds to largest budget. Later the
* budget will be amended if this is not true.
*/
if (appending)
/* We are appending data, budget for inode change */
req.dirtied_ino = 1;
err = ubifs_budget_space(c, &req);
if (unlikely(err))
return err;
page = grab_cache_page_write_begin(mapping, index, flags);
if (unlikely(!page)) {
ubifs_release_budget(c, &req);
return -ENOMEM;
}
if (!PageUptodate(page)) {
if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
SetPageChecked(page);
else {
err = do_readpage(page);
if (err) {
unlock_page(page);
put_page(page);
ubifs_release_budget(c, &req);
return err;
}
}
SetPageUptodate(page);
ClearPageError(page);
}
if (PagePrivate(page))
/*
* The page is dirty, which means it was budgeted twice:
* o first time the budget was allocated by the task which
* made the page dirty and set the PG_private flag;
* o and then we budgeted for it for the second time at the
* very beginning of this function.
*
* So what we have to do is to release the page budget we
* allocated.
*/
release_new_page_budget(c);
else if (!PageChecked(page))
/*
* We are changing a page which already exists on the media.
* This means that changing the page does not make the amount
* of indexing information larger, and this part of the budget
* which we have already acquired may be released.
*/
ubifs_convert_page_budget(c);
if (appending) {
struct ubifs_inode *ui = ubifs_inode(inode);
/*
* 'ubifs_write_end()' is optimized from the fast-path part of
* 'ubifs_write_begin()' and expects the @ui_mutex to be locked
* if data is appended.
*/
mutex_lock(&ui->ui_mutex);
if (ui->dirty)
/*
* The inode is dirty already, so we may free the
* budget we allocated.
*/
ubifs_release_dirty_inode_budget(c, ui);
}
*pagep = page;
return 0;
}
/**
* allocate_budget - allocate budget for 'ubifs_write_begin()'.
* @c: UBIFS file-system description object
* @page: page to allocate budget for
* @ui: UBIFS inode object the page belongs to
* @appending: non-zero if the page is appended
*
* This is a helper function for 'ubifs_write_begin()' which allocates budget
* for the operation. The budget is allocated differently depending on whether
* this is appending, whether the page is dirty or not, and so on. This
* function leaves the @ui->ui_mutex locked in case of appending. Returns zero
* in case of success and %-ENOSPC in case of failure.
*/
static int allocate_budget(struct ubifs_info *c, struct page *page,
struct ubifs_inode *ui, int appending)
{
struct ubifs_budget_req req = { .fast = 1 };
if (PagePrivate(page)) {
if (!appending)
/*
* The page is dirty and we are not appending, which
* means no budget is needed at all.
*/
return 0;
mutex_lock(&ui->ui_mutex);
if (ui->dirty)
/*
* The page is dirty and we are appending, so the inode
* has to be marked as dirty. However, it is already
* dirty, so we do not need any budget. We may return,
* but @ui->ui_mutex hast to be left locked because we
* should prevent write-back from flushing the inode
* and freeing the budget. The lock will be released in
* 'ubifs_write_end()'.
*/
return 0;
/*
* The page is dirty, we are appending, the inode is clean, so
* we need to budget the inode change.
*/
req.dirtied_ino = 1;
} else {
if (PageChecked(page))
/*
* The page corresponds to a hole and does not
* exist on the media. So changing it makes
* make the amount of indexing information
* larger, and we have to budget for a new
* page.
*/
req.new_page = 1;
else
/*
* Not a hole, the change will not add any new
* indexing information, budget for page
* change.
*/
req.dirtied_page = 1;
if (appending) {
mutex_lock(&ui->ui_mutex);
if (!ui->dirty)
/*
* The inode is clean but we will have to mark
* it as dirty because we are appending. This
* needs a budget.
*/
req.dirtied_ino = 1;
}
}
return ubifs_budget_space(c, &req);
}
/*
* This function is called when a page of data is going to be written. Since
* the page of data will not necessarily go to the flash straight away, UBIFS
* has to reserve space on the media for it, which is done by means of
* budgeting.
*
* This is the hot-path of the file-system and we are trying to optimize it as
* much as possible. For this reasons it is split on 2 parts - slow and fast.
*
* There many budgeting cases:
* o a new page is appended - we have to budget for a new page and for
* changing the inode; however, if the inode is already dirty, there is
* no need to budget for it;
* o an existing clean page is changed - we have budget for it; if the page
* does not exist on the media (a hole), we have to budget for a new
* page; otherwise, we may budget for changing an existing page; the
* difference between these cases is that changing an existing page does
* not introduce anything new to the FS indexing information, so it does
* not grow, and smaller budget is acquired in this case;
* o an existing dirty page is changed - no need to budget at all, because
* the page budget has been acquired by earlier, when the page has been
* marked dirty.
*
* UBIFS budgeting sub-system may force write-back if it thinks there is no
* space to reserve. This imposes some locking restrictions and makes it
* impossible to take into account the above cases, and makes it impossible to
* optimize budgeting.
*
* The solution for this is that the fast path of 'ubifs_write_begin()' assumes
* there is a plenty of flash space and the budget will be acquired quickly,
* without forcing write-back. The slow path does not make this assumption.
*/
static int ubifs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_inode *ui = ubifs_inode(inode);
pgoff_t index = pos >> PAGE_SHIFT;
int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
int skipped_read = 0;
struct page *page;
ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
ubifs_assert(c, !c->ro_media && !c->ro_mount);
if (unlikely(c->ro_error))
return -EROFS;
/* Try out the fast-path part first */
page = grab_cache_page_write_begin(mapping, index, flags);
if (unlikely(!page))
return -ENOMEM;
if (!PageUptodate(page)) {
/* The page is not loaded from the flash */
if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
/*
* We change whole page so no need to load it. But we
* do not know whether this page exists on the media or
* not, so we assume the latter because it requires
* larger budget. The assumption is that it is better
* to budget a bit more than to read the page from the
* media. Thus, we are setting the @PG_checked flag
* here.
*/
SetPageChecked(page);
skipped_read = 1;
} else {
err = do_readpage(page);
if (err) {
unlock_page(page);
put_page(page);
return err;
}
}
SetPageUptodate(page);
ClearPageError(page);
}
err = allocate_budget(c, page, ui, appending);
if (unlikely(err)) {
ubifs_assert(c, err == -ENOSPC);
/*
* If we skipped reading the page because we were going to
* write all of it, then it is not up to date.
*/
if (skipped_read) {
ClearPageChecked(page);
ClearPageUptodate(page);
}
/*
* Budgeting failed which means it would have to force
* write-back but didn't, because we set the @fast flag in the
* request. Write-back cannot be done now, while we have the
* page locked, because it would deadlock. Unlock and free
* everything and fall-back to slow-path.
*/
if (appending) {
ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
mutex_unlock(&ui->ui_mutex);
}
unlock_page(page);
put_page(page);
return write_begin_slow(mapping, pos, len, pagep, flags);
}
/*
* Whee, we acquired budgeting quickly - without involving
* garbage-collection, committing or forcing write-back. We return
* with @ui->ui_mutex locked if we are appending pages, and unlocked
* otherwise. This is an optimization (slightly hacky though).
*/
*pagep = page;
return 0;
}
/**
* cancel_budget - cancel budget.
* @c: UBIFS file-system description object
* @page: page to cancel budget for
* @ui: UBIFS inode object the page belongs to
* @appending: non-zero if the page is appended
*
* This is a helper function for a page write operation. It unlocks the
* @ui->ui_mutex in case of appending.
*/
static void cancel_budget(struct ubifs_info *c, struct page *page,
struct ubifs_inode *ui, int appending)
{
if (appending) {
if (!ui->dirty)
ubifs_release_dirty_inode_budget(c, ui);
mutex_unlock(&ui->ui_mutex);
}
if (!PagePrivate(page)) {
if (PageChecked(page))
release_new_page_budget(c);
else
release_existing_page_budget(c);
}
}
static int ubifs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = mapping->host;
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_info *c = inode->i_sb->s_fs_info;
loff_t end_pos = pos + len;
int appending = !!(end_pos > inode->i_size);
dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
inode->i_ino, pos, page->index, len, copied, inode->i_size);
if (unlikely(copied < len && len == PAGE_SIZE)) {
/*
* VFS copied less data to the page that it intended and
* declared in its '->write_begin()' call via the @len
* argument. If the page was not up-to-date, and @len was
* @PAGE_SIZE, the 'ubifs_write_begin()' function did
* not load it from the media (for optimization reasons). This
* means that part of the page contains garbage. So read the
* page now.
*/
dbg_gen("copied %d instead of %d, read page and repeat",
copied, len);
cancel_budget(c, page, ui, appending);
ClearPageChecked(page);
/*
* Return 0 to force VFS to repeat the whole operation, or the
* error code if 'do_readpage()' fails.
*/
copied = do_readpage(page);
goto out;
}
if (!PagePrivate(page)) {
SetPagePrivate(page);
atomic_long_inc(&c->dirty_pg_cnt);
__set_page_dirty_nobuffers(page);
}
if (appending) {
i_size_write(inode, end_pos);
ui->ui_size = end_pos;
/*
* Note, we do not set @I_DIRTY_PAGES (which means that the
* inode has dirty pages), this has been done in
* '__set_page_dirty_nobuffers()'.
*/
__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
mutex_unlock(&ui->ui_mutex);
}
out:
unlock_page(page);
put_page(page);
return copied;
}
/**
* populate_page - copy data nodes into a page for bulk-read.
* @c: UBIFS file-system description object
* @page: page
* @bu: bulk-read information
* @n: next zbranch slot
*
* This function returns %0 on success and a negative error code on failure.
*/
static int populate_page(struct ubifs_info *c, struct page *page,
struct bu_info *bu, int *n)
{
int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
struct inode *inode = page->mapping->host;
loff_t i_size = i_size_read(inode);
unsigned int page_block;
void *addr, *zaddr;
pgoff_t end_index;
dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
inode->i_ino, page->index, i_size, page->flags);
addr = zaddr = kmap(page);
end_index = (i_size - 1) >> PAGE_SHIFT;
if (!i_size || page->index > end_index) {
hole = 1;
memset(addr, 0, PAGE_SIZE);
goto out_hole;
}
page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
while (1) {
int err, len, out_len, dlen;
if (nn >= bu->cnt) {
hole = 1;
memset(addr, 0, UBIFS_BLOCK_SIZE);
} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
struct ubifs_data_node *dn;
dn = bu->buf + (bu->zbranch[nn].offs - offs);
ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
ubifs_inode(inode)->creat_sqnum);
len = le32_to_cpu(dn->size);
if (len <= 0 || len > UBIFS_BLOCK_SIZE)
goto out_err;
dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
out_len = UBIFS_BLOCK_SIZE;
if (ubifs_crypt_is_encrypted(inode)) {
err = ubifs_decrypt(inode, dn, &dlen, page_block);
if (err)
goto out_err;
}
err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
le16_to_cpu(dn->compr_type));
if (err || len != out_len)
goto out_err;
if (len < UBIFS_BLOCK_SIZE)
memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
nn += 1;
read = (i << UBIFS_BLOCK_SHIFT) + len;
} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
nn += 1;
continue;
} else {
hole = 1;
memset(addr, 0, UBIFS_BLOCK_SIZE);
}
if (++i >= UBIFS_BLOCKS_PER_PAGE)
break;
addr += UBIFS_BLOCK_SIZE;
page_block += 1;
}
if (end_index == page->index) {
int len = i_size & (PAGE_SIZE - 1);
if (len && len < read)
memset(zaddr + len, 0, read - len);
}
out_hole:
if (hole) {
SetPageChecked(page);
dbg_gen("hole");
}
SetPageUptodate(page);
ClearPageError(page);
flush_dcache_page(page);
kunmap(page);
*n = nn;
return 0;
out_err:
ClearPageUptodate(page);
SetPageError(page);
flush_dcache_page(page);
kunmap(page);
ubifs_err(c, "bad data node (block %u, inode %lu)",
page_block, inode->i_ino);
return -EINVAL;
}
/**
* ubifs_do_bulk_read - do bulk-read.
* @c: UBIFS file-system description object
* @bu: bulk-read information
* @page1: first page to read
*
* This function returns %1 if the bulk-read is done, otherwise %0 is returned.
*/
static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
struct page *page1)
{
pgoff_t offset = page1->index, end_index;
struct address_space *mapping = page1->mapping;
struct inode *inode = mapping->host;
struct ubifs_inode *ui = ubifs_inode(inode);
int err, page_idx, page_cnt, ret = 0, n = 0;
int allocate = bu->buf ? 0 : 1;
loff_t isize;
gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
err = ubifs_tnc_get_bu_keys(c, bu);
if (err)
goto out_warn;
if (bu->eof) {
/* Turn off bulk-read at the end of the file */
ui->read_in_a_row = 1;
ui->bulk_read = 0;
}
page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
if (!page_cnt) {
/*
* This happens when there are multiple blocks per page and the
* blocks for the first page we are looking for, are not
* together. If all the pages were like this, bulk-read would
* reduce performance, so we turn it off for a while.
*/
goto out_bu_off;
}
if (bu->cnt) {
if (allocate) {
/*
* Allocate bulk-read buffer depending on how many data
* nodes we are going to read.
*/
bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
bu->zbranch[bu->cnt - 1].len -
bu->zbranch[0].offs;
ubifs_assert(c, bu->buf_len > 0);
ubifs_assert(c, bu->buf_len <= c->leb_size);
bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
if (!bu->buf)
goto out_bu_off;
}
err = ubifs_tnc_bulk_read(c, bu);
if (err)
goto out_warn;
}
err = populate_page(c, page1, bu, &n);
if (err)
goto out_warn;
unlock_page(page1);
ret = 1;
isize = i_size_read(inode);
if (isize == 0)
goto out_free;
end_index = ((isize - 1) >> PAGE_SHIFT);
for (page_idx = 1; page_idx < page_cnt; page_idx++) {
pgoff_t page_offset = offset + page_idx;
struct page *page;
if (page_offset > end_index)
break;
page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
if (!page)
break;
if (!PageUptodate(page))
err = populate_page(c, page, bu, &n);
unlock_page(page);
put_page(page);
if (err)
break;
}
ui->last_page_read = offset + page_idx - 1;
out_free:
if (allocate)
kfree(bu->buf);
return ret;
out_warn:
ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
goto out_free;
out_bu_off:
ui->read_in_a_row = ui->bulk_read = 0;
goto out_free;
}
/**
* ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
* @page: page from which to start bulk-read.
*
* Some flash media are capable of reading sequentially at faster rates. UBIFS
* bulk-read facility is designed to take advantage of that, by reading in one
* go consecutive data nodes that are also located consecutively in the same
* LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
*/
static int ubifs_bulk_read(struct page *page)
{
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_inode *ui = ubifs_inode(inode);
pgoff_t index = page->index, last_page_read = ui->last_page_read;
struct bu_info *bu;
int err = 0, allocated = 0;
ui->last_page_read = index;
if (!c->bulk_read)
return 0;
/*
* Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
* so don't bother if we cannot lock the mutex.
*/
if (!mutex_trylock(&ui->ui_mutex))
return 0;
if (index != last_page_read + 1) {
/* Turn off bulk-read if we stop reading sequentially */
ui->read_in_a_row = 1;
if (ui->bulk_read)
ui->bulk_read = 0;
goto out_unlock;
}
if (!ui->bulk_read) {
ui->read_in_a_row += 1;
if (ui->read_in_a_row < 3)
goto out_unlock;
/* Three reads in a row, so switch on bulk-read */
ui->bulk_read = 1;
}
/*
* If possible, try to use pre-allocated bulk-read information, which
* is protected by @c->bu_mutex.
*/
if (mutex_trylock(&c->bu_mutex))
bu = &c->bu;
else {
bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
if (!bu)
goto out_unlock;
bu->buf = NULL;
allocated = 1;
}
bu->buf_len = c->max_bu_buf_len;
data_key_init(c, &bu->key, inode->i_ino,
page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
err = ubifs_do_bulk_read(c, bu, page);
if (!allocated)
mutex_unlock(&c->bu_mutex);
else
kfree(bu);
out_unlock:
mutex_unlock(&ui->ui_mutex);
return err;
}
static int ubifs_readpage(struct file *file, struct page *page)
{
if (ubifs_bulk_read(page))
return 0;
do_readpage(page);
unlock_page(page);
return 0;
}
static int do_writepage(struct page *page, int len)
{
int err = 0, i, blen;
unsigned int block;
void *addr;
union ubifs_key key;
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
#ifdef UBIFS_DEBUG
struct ubifs_inode *ui = ubifs_inode(inode);
spin_lock(&ui->ui_lock);
ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
spin_unlock(&ui->ui_lock);
#endif
/* Update radix tree tags */
set_page_writeback(page);
addr = kmap(page);
block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
i = 0;
while (len) {
blen = min_t(int, len, UBIFS_BLOCK_SIZE);
data_key_init(c, &key, inode->i_ino, block);
err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
if (err)
break;
if (++i >= UBIFS_BLOCKS_PER_PAGE)
break;
block += 1;
addr += blen;
len -= blen;
}
if (err) {
SetPageError(page);
ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
page->index, inode->i_ino, err);
ubifs_ro_mode(c, err);
}
ubifs_assert(c, PagePrivate(page));
if (PageChecked(page))
release_new_page_budget(c);
else
release_existing_page_budget(c);
atomic_long_dec(&c->dirty_pg_cnt);
ClearPagePrivate(page);
ClearPageChecked(page);
kunmap(page);
unlock_page(page);
end_page_writeback(page);
return err;
}
/*
* When writing-back dirty inodes, VFS first writes-back pages belonging to the
* inode, then the inode itself. For UBIFS this may cause a problem. Consider a
* situation when a we have an inode with size 0, then a megabyte of data is
* appended to the inode, then write-back starts and flushes some amount of the
* dirty pages, the journal becomes full, commit happens and finishes, and then
* an unclean reboot happens. When the file system is mounted next time, the
* inode size would still be 0, but there would be many pages which are beyond
* the inode size, they would be indexed and consume flash space. Because the
* journal has been committed, the replay would not be able to detect this
* situation and correct the inode size. This means UBIFS would have to scan
* whole index and correct all inode sizes, which is long an unacceptable.
*
* To prevent situations like this, UBIFS writes pages back only if they are
* within the last synchronized inode size, i.e. the size which has been
* written to the flash media last time. Otherwise, UBIFS forces inode
* write-back, thus making sure the on-flash inode contains current inode size,
* and then keeps writing pages back.
*
* Some locking issues explanation. 'ubifs_writepage()' first is called with
* the page locked, and it locks @ui_mutex. However, write-back does take inode
* @i_mutex, which means other VFS operations may be run on this inode at the
* same time. And the problematic one is truncation to smaller size, from where
* we have to call 'truncate_setsize()', which first changes @inode->i_size,
* then drops the truncated pages. And while dropping the pages, it takes the
* page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
* with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
* This means that @inode->i_size is changed while @ui_mutex is unlocked.
*
* XXX(truncate): with the new truncate sequence this is not true anymore,
* and the calls to truncate_setsize can be move around freely. They should
* be moved to the very end of the truncate sequence.
*
* But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
* inode size. How do we do this if @inode->i_size may became smaller while we
* are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
* @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
* internally and updates it under @ui_mutex.
*
* Q: why we do not worry that if we race with truncation, we may end up with a
* situation when the inode is truncated while we are in the middle of
* 'do_writepage()', so we do write beyond inode size?
* A: If we are in the middle of 'do_writepage()', truncation would be locked
* on the page lock and it would not write the truncated inode node to the
* journal before we have finished.
*/
static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_inode *ui = ubifs_inode(inode);
loff_t i_size = i_size_read(inode), synced_i_size;
pgoff_t end_index = i_size >> PAGE_SHIFT;
int err, len = i_size & (PAGE_SIZE - 1);
void *kaddr;
dbg_gen("ino %lu, pg %lu, pg flags %#lx",
inode->i_ino, page->index, page->flags);
ubifs_assert(c, PagePrivate(page));
/* Is the page fully outside @i_size? (truncate in progress) */
if (page->index > end_index || (page->index == end_index && !len)) {
err = 0;
goto out_unlock;
}
spin_lock(&ui->ui_lock);
synced_i_size = ui->synced_i_size;
spin_unlock(&ui->ui_lock);
/* Is the page fully inside @i_size? */
if (page->index < end_index) {
if (page->index >= synced_i_size >> PAGE_SHIFT) {
err = inode->i_sb->s_op->write_inode(inode, NULL);
if (err)
goto out_unlock;
/*
* The inode has been written, but the write-buffer has
* not been synchronized, so in case of an unclean
* reboot we may end up with some pages beyond inode
* size, but they would be in the journal (because
* commit flushes write buffers) and recovery would deal
* with this.
*/
}
return do_writepage(page, PAGE_SIZE);
}
/*
* The page straddles @i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
kaddr = kmap_atomic(page);
memset(kaddr + len, 0, PAGE_SIZE - len);
flush_dcache_page(page);
kunmap_atomic(kaddr);
if (i_size > synced_i_size) {
err = inode->i_sb->s_op->write_inode(inode, NULL);
if (err)
goto out_unlock;
}
return do_writepage(page, len);
out_unlock:
unlock_page(page);
return err;
}
/**
* do_attr_changes - change inode attributes.
* @inode: inode to change attributes for
* @attr: describes attributes to change
*/
static void do_attr_changes(struct inode *inode, const struct iattr *attr)
{
if (attr->ia_valid & ATTR_UID)
inode->i_uid = attr->ia_uid;
if (attr->ia_valid & ATTR_GID)
inode->i_gid = attr->ia_gid;
if (attr->ia_valid & ATTR_ATIME)
inode->i_atime = attr->ia_atime;
if (attr->ia_valid & ATTR_MTIME)
inode->i_mtime = attr->ia_mtime;
if (attr->ia_valid & ATTR_CTIME)
inode->i_ctime = attr->ia_ctime;
if (attr->ia_valid & ATTR_MODE) {
umode_t mode = attr->ia_mode;
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
mode &= ~S_ISGID;
inode->i_mode = mode;
}
}
/**
* do_truncation - truncate an inode.
* @c: UBIFS file-system description object
* @inode: inode to truncate
* @attr: inode attribute changes description
*
* This function implements VFS '->setattr()' call when the inode is truncated
* to a smaller size. Returns zero in case of success and a negative error code
* in case of failure.
*/
static int do_truncation(struct ubifs_info *c, struct inode *inode,
const struct iattr *attr)
{
int err;
struct ubifs_budget_req req;
loff_t old_size = inode->i_size, new_size = attr->ia_size;
int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
struct ubifs_inode *ui = ubifs_inode(inode);
dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
memset(&req, 0, sizeof(struct ubifs_budget_req));
/*
* If this is truncation to a smaller size, and we do not truncate on a
* block boundary, budget for changing one data block, because the last
* block will be re-written.
*/
if (new_size & (UBIFS_BLOCK_SIZE - 1))
req.dirtied_page = 1;
req.dirtied_ino = 1;
/* A funny way to budget for truncation node */
req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
err = ubifs_budget_space(c, &req);
if (err) {
/*
* Treat truncations to zero as deletion and always allow them,
* just like we do for '->unlink()'.
*/
if (new_size || err != -ENOSPC)
return err;
budgeted = 0;
}
truncate_setsize(inode, new_size);
if (offset) {
pgoff_t index = new_size >> PAGE_SHIFT;
struct page *page;
page = find_lock_page(inode->i_mapping, index);
if (page) {
if (PageDirty(page)) {
/*
* 'ubifs_jnl_truncate()' will try to truncate
* the last data node, but it contains
* out-of-date data because the page is dirty.
* Write the page now, so that
* 'ubifs_jnl_truncate()' will see an already
* truncated (and up to date) data node.
*/
ubifs_assert(c, PagePrivate(page));
clear_page_dirty_for_io(page);
if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
offset = new_size &
(PAGE_SIZE - 1);
err = do_writepage(page, offset);
put_page(page);
if (err)
goto out_budg;
/*
* We could now tell 'ubifs_jnl_truncate()' not
* to read the last block.
*/
} else {
/*
* We could 'kmap()' the page and pass the data
* to 'ubifs_jnl_truncate()' to save it from
* having to read it.
*/
unlock_page(page);
put_page(page);
}
}
}
mutex_lock(&ui->ui_mutex);
ui->ui_size = inode->i_size;
/* Truncation changes inode [mc]time */
inode->i_mtime = inode->i_ctime = current_time(inode);
/* Other attributes may be changed at the same time as well */
do_attr_changes(inode, attr);
err = ubifs_jnl_truncate(c, inode, old_size, new_size);
mutex_unlock(&ui->ui_mutex);
out_budg:
if (budgeted)
ubifs_release_budget(c, &req);
else {
c->bi.nospace = c->bi.nospace_rp = 0;
smp_wmb();
}
return err;
}
/**
* do_setattr - change inode attributes.
* @c: UBIFS file-system description object
* @inode: inode to change attributes for
* @attr: inode attribute changes description
*
* This function implements VFS '->setattr()' call for all cases except
* truncations to smaller size. Returns zero in case of success and a negative
* error code in case of failure.
*/
static int do_setattr(struct ubifs_info *c, struct inode *inode,
const struct iattr *attr)
{
int err, release;
loff_t new_size = attr->ia_size;
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_budget_req req = { .dirtied_ino = 1,
.dirtied_ino_d = ALIGN(ui->data_len, 8) };
err = ubifs_budget_space(c, &req);
if (err)
return err;
if (attr->ia_valid & ATTR_SIZE) {
dbg_gen("size %lld -> %lld", inode->i_size, new_size);
truncate_setsize(inode, new_size);
}
mutex_lock(&ui->ui_mutex);
if (attr->ia_valid & ATTR_SIZE) {
/* Truncation changes inode [mc]time */
inode->i_mtime = inode->i_ctime = current_time(inode);
/* 'truncate_setsize()' changed @i_size, update @ui_size */
ui->ui_size = inode->i_size;
}
do_attr_changes(inode, attr);
release = ui->dirty;
if (attr->ia_valid & ATTR_SIZE)
/*
* Inode length changed, so we have to make sure
* @I_DIRTY_DATASYNC is set.
*/
__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
else
mark_inode_dirty_sync(inode);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_budget(c, &req);
if (IS_SYNC(inode))
err = inode->i_sb->s_op->write_inode(inode, NULL);
return err;
}
int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
{
int err;
struct inode *inode = d_inode(dentry);
struct ubifs_info *c = inode->i_sb->s_fs_info;
dbg_gen("ino %lu, mode %#x, ia_valid %#x",
inode->i_ino, inode->i_mode, attr->ia_valid);
err = setattr_prepare(dentry, attr);
if (err)
return err;
err = dbg_check_synced_i_size(c, inode);
if (err)
return err;
err = fscrypt_prepare_setattr(dentry, attr);
if (err)
return err;
if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
/* Truncation to a smaller size */
err = do_truncation(c, inode, attr);
else
err = do_setattr(c, inode, attr);
return err;
}
static void ubifs_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
ubifs_assert(c, PagePrivate(page));
if (offset || length < PAGE_SIZE)
/* Partial page remains dirty */
return;
if (PageChecked(page))
release_new_page_budget(c);
else
release_existing_page_budget(c);
atomic_long_dec(&c->dirty_pg_cnt);
ClearPagePrivate(page);
ClearPageChecked(page);
}
int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
int err;
dbg_gen("syncing inode %lu", inode->i_ino);
if (c->ro_mount)
/*
* For some really strange reasons VFS does not filter out
* 'fsync()' for R/O mounted file-systems as per 2.6.39.
*/
return 0;
err = file_write_and_wait_range(file, start, end);
if (err)
return err;
inode_lock(inode);
/* Synchronize the inode unless this is a 'datasync()' call. */
if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
err = inode->i_sb->s_op->write_inode(inode, NULL);
if (err)
goto out;
}
/*
* Nodes related to this inode may still sit in a write-buffer. Flush
* them.
*/
err = ubifs_sync_wbufs_by_inode(c, inode);
out:
inode_unlock(inode);
return err;
}
/**
* mctime_update_needed - check if mtime or ctime update is needed.
* @inode: the inode to do the check for
* @now: current time
*
* This helper function checks if the inode mtime/ctime should be updated or
* not. If current values of the time-stamps are within the UBIFS inode time
* granularity, they are not updated. This is an optimization.
*/
static inline int mctime_update_needed(const struct inode *inode,
const struct timespec64 *now)
{
if (!timespec64_equal(&inode->i_mtime, now) ||
!timespec64_equal(&inode->i_ctime, now))
return 1;
return 0;
}
/**
* ubifs_update_time - update time of inode.
* @inode: inode to update
*
* This function updates time of the inode.
*/
int ubifs_update_time(struct inode *inode, struct timespec64 *time,
int flags)
{
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_budget_req req = { .dirtied_ino = 1,
.dirtied_ino_d = ALIGN(ui->data_len, 8) };
int iflags = I_DIRTY_TIME;
int err, release;
if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
return generic_update_time(inode, time, flags);
err = ubifs_budget_space(c, &req);
if (err)
return err;
mutex_lock(&ui->ui_mutex);
if (flags & S_ATIME)
inode->i_atime = *time;
if (flags & S_CTIME)
inode->i_ctime = *time;
if (flags & S_MTIME)
inode->i_mtime = *time;
if (!(inode->i_sb->s_flags & SB_LAZYTIME))
iflags |= I_DIRTY_SYNC;
release = ui->dirty;
__mark_inode_dirty(inode, iflags);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_budget(c, &req);
return 0;
}
/**
* update_mctime - update mtime and ctime of an inode.
* @inode: inode to update
*
* This function updates mtime and ctime of the inode if it is not equivalent to
* current time. Returns zero in case of success and a negative error code in
* case of failure.
*/
static int update_mctime(struct inode *inode)
{
struct timespec64 now = current_time(inode);
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_info *c = inode->i_sb->s_fs_info;
if (mctime_update_needed(inode, &now)) {
int err, release;
struct ubifs_budget_req req = { .dirtied_ino = 1,
.dirtied_ino_d = ALIGN(ui->data_len, 8) };
err = ubifs_budget_space(c, &req);
if (err)
return err;
mutex_lock(&ui->ui_mutex);
inode->i_mtime = inode->i_ctime = current_time(inode);
release = ui->dirty;
mark_inode_dirty_sync(inode);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_budget(c, &req);
}
return 0;
}
static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
int err = update_mctime(file_inode(iocb->ki_filp));
if (err)
return err;
return generic_file_write_iter(iocb, from);
}
static int ubifs_set_page_dirty(struct page *page)
{
int ret;
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
ret = __set_page_dirty_nobuffers(page);
/*
* An attempt to dirty a page without budgeting for it - should not
* happen.
*/
ubifs_assert(c, ret == 0);
return ret;
}
#ifdef CONFIG_MIGRATION
static int ubifs_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page, enum migrate_mode mode)
{
int rc;
rc = migrate_page_move_mapping(mapping, newpage, page, 0);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
if (PagePrivate(page)) {
ClearPagePrivate(page);
SetPagePrivate(newpage);
}
if (mode != MIGRATE_SYNC_NO_COPY)
migrate_page_copy(newpage, page);
else
migrate_page_states(newpage, page);
return MIGRATEPAGE_SUCCESS;
}
#endif
static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
{
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
/*
* An attempt to release a dirty page without budgeting for it - should
* not happen.
*/
if (PageWriteback(page))
return 0;
ubifs_assert(c, PagePrivate(page));
ubifs_assert(c, 0);
ClearPagePrivate(page);
ClearPageChecked(page);
return 1;
}
/*
* mmap()d file has taken write protection fault and is being made writable.
* UBIFS must ensure page is budgeted for.
*/
static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vmf->vma->vm_file);
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct timespec64 now = current_time(inode);
struct ubifs_budget_req req = { .new_page = 1 };
int err, update_time;
dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
i_size_read(inode));
ubifs_assert(c, !c->ro_media && !c->ro_mount);
if (unlikely(c->ro_error))
return VM_FAULT_SIGBUS; /* -EROFS */
/*
* We have not locked @page so far so we may budget for changing the
* page. Note, we cannot do this after we locked the page, because
* budgeting may cause write-back which would cause deadlock.
*
* At the moment we do not know whether the page is dirty or not, so we
* assume that it is not and budget for a new page. We could look at
* the @PG_private flag and figure this out, but we may race with write
* back and the page state may change by the time we lock it, so this
* would need additional care. We do not bother with this at the
* moment, although it might be good idea to do. Instead, we allocate
* budget for a new page and amend it later on if the page was in fact
* dirty.
*
* The budgeting-related logic of this function is similar to what we
* do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
* for more comments.
*/
update_time = mctime_update_needed(inode, &now);
if (update_time)
/*
* We have to change inode time stamp which requires extra
* budgeting.
*/
req.dirtied_ino = 1;
err = ubifs_budget_space(c, &req);
if (unlikely(err)) {
if (err == -ENOSPC)
ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
inode->i_ino);
return VM_FAULT_SIGBUS;
}
lock_page(page);
if (unlikely(page->mapping != inode->i_mapping ||
page_offset(page) > i_size_read(inode))) {
/* Page got truncated out from underneath us */
goto sigbus;
}
if (PagePrivate(page))
release_new_page_budget(c);
else {
if (!PageChecked(page))
ubifs_convert_page_budget(c);
SetPagePrivate(page);
atomic_long_inc(&c->dirty_pg_cnt);
__set_page_dirty_nobuffers(page);
}
if (update_time) {
int release;
struct ubifs_inode *ui = ubifs_inode(inode);
mutex_lock(&ui->ui_mutex);
inode->i_mtime = inode->i_ctime = current_time(inode);
release = ui->dirty;
mark_inode_dirty_sync(inode);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_dirty_inode_budget(c, ui);
}
wait_for_stable_page(page);
return VM_FAULT_LOCKED;
sigbus:
unlock_page(page);
ubifs_release_budget(c, &req);
return VM_FAULT_SIGBUS;
}
static const struct vm_operations_struct ubifs_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = ubifs_vm_page_mkwrite,
};
static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
int err;
err = generic_file_mmap(file, vma);
if (err)
return err;
vma->vm_ops = &ubifs_file_vm_ops;
if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
file_accessed(file);
return 0;
}
static const char *ubifs_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
struct ubifs_inode *ui = ubifs_inode(inode);
if (!IS_ENCRYPTED(inode))
return ui->data;
if (!dentry)
return ERR_PTR(-ECHILD);
return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
}
const struct address_space_operations ubifs_file_address_operations = {
.readpage = ubifs_readpage,
.writepage = ubifs_writepage,
.write_begin = ubifs_write_begin,
.write_end = ubifs_write_end,
.invalidatepage = ubifs_invalidatepage,
.set_page_dirty = ubifs_set_page_dirty,
#ifdef CONFIG_MIGRATION
.migratepage = ubifs_migrate_page,
#endif
.releasepage = ubifs_releasepage,
};
const struct inode_operations ubifs_file_inode_operations = {
.setattr = ubifs_setattr,
.getattr = ubifs_getattr,
#ifdef CONFIG_UBIFS_FS_XATTR
.listxattr = ubifs_listxattr,
#endif
.update_time = ubifs_update_time,
};
const struct inode_operations ubifs_symlink_inode_operations = {
.get_link = ubifs_get_link,
.setattr = ubifs_setattr,
.getattr = ubifs_getattr,
#ifdef CONFIG_UBIFS_FS_XATTR
.listxattr = ubifs_listxattr,
#endif
.update_time = ubifs_update_time,
};
const struct file_operations ubifs_file_operations = {
.llseek = generic_file_llseek,
.read_iter = generic_file_read_iter,
.write_iter = ubifs_write_iter,
.mmap = ubifs_file_mmap,
.fsync = ubifs_fsync,
.unlocked_ioctl = ubifs_ioctl,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.open = fscrypt_file_open,
#ifdef CONFIG_COMPAT
.compat_ioctl = ubifs_compat_ioctl,
#endif
};
|