summaryrefslogtreecommitdiffstats
path: root/fs/crypto/crypto.c
blob: 984e190f9b8943ca76c3f396736ae7f436beec99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*
 * This contains encryption functions for per-file encryption.
 *
 * Copyright (C) 2015, Google, Inc.
 * Copyright (C) 2015, Motorola Mobility
 *
 * Written by Michael Halcrow, 2014.
 *
 * Filename encryption additions
 *	Uday Savagaonkar, 2014
 * Encryption policy handling additions
 *	Ildar Muslukhov, 2014
 * Add fscrypt_pullback_bio_page()
 *	Jaegeuk Kim, 2015.
 *
 * This has not yet undergone a rigorous security audit.
 *
 * The usage of AES-XTS should conform to recommendations in NIST
 * Special Publication 800-38E and IEEE P1619/D16.
 */

#include <linux/pagemap.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/ratelimit.h>
#include <linux/dcache.h>
#include <linux/namei.h>
#include <crypto/aes.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"

static unsigned int num_prealloc_crypto_pages = 32;
static unsigned int num_prealloc_crypto_ctxs = 128;

module_param(num_prealloc_crypto_pages, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_pages,
		"Number of crypto pages to preallocate");
module_param(num_prealloc_crypto_ctxs, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
		"Number of crypto contexts to preallocate");

static mempool_t *fscrypt_bounce_page_pool = NULL;

static LIST_HEAD(fscrypt_free_ctxs);
static DEFINE_SPINLOCK(fscrypt_ctx_lock);

struct workqueue_struct *fscrypt_read_workqueue;
static DEFINE_MUTEX(fscrypt_init_mutex);

static struct kmem_cache *fscrypt_ctx_cachep;
struct kmem_cache *fscrypt_info_cachep;

/**
 * fscrypt_release_ctx() - Releases an encryption context
 * @ctx: The encryption context to release.
 *
 * If the encryption context was allocated from the pre-allocated pool, returns
 * it to that pool. Else, frees it.
 *
 * If there's a bounce page in the context, this frees that.
 */
void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
{
	unsigned long flags;

	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
		ctx->w.bounce_page = NULL;
	}
	ctx->w.control_page = NULL;
	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
		kmem_cache_free(fscrypt_ctx_cachep, ctx);
	} else {
		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
		list_add(&ctx->free_list, &fscrypt_free_ctxs);
		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
	}
}
EXPORT_SYMBOL(fscrypt_release_ctx);

/**
 * fscrypt_get_ctx() - Gets an encryption context
 * @inode:       The inode for which we are doing the crypto
 * @gfp_flags:   The gfp flag for memory allocation
 *
 * Allocates and initializes an encryption context.
 *
 * Return: An allocated and initialized encryption context on success; error
 * value or NULL otherwise.
 */
struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
{
	struct fscrypt_ctx *ctx = NULL;
	struct fscrypt_info *ci = inode->i_crypt_info;
	unsigned long flags;

	if (ci == NULL)
		return ERR_PTR(-ENOKEY);

	/*
	 * We first try getting the ctx from a free list because in
	 * the common case the ctx will have an allocated and
	 * initialized crypto tfm, so it's probably a worthwhile
	 * optimization. For the bounce page, we first try getting it
	 * from the kernel allocator because that's just about as fast
	 * as getting it from a list and because a cache of free pages
	 * should generally be a "last resort" option for a filesystem
	 * to be able to do its job.
	 */
	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
					struct fscrypt_ctx, free_list);
	if (ctx)
		list_del(&ctx->free_list);
	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
	if (!ctx) {
		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
		if (!ctx)
			return ERR_PTR(-ENOMEM);
		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
	} else {
		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
	}
	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
	return ctx;
}
EXPORT_SYMBOL(fscrypt_get_ctx);

int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
			   u64 lblk_num, struct page *src_page,
			   struct page *dest_page, unsigned int len,
			   unsigned int offs, gfp_t gfp_flags)
{
	struct {
		__le64 index;
		u8 padding[FS_IV_SIZE - sizeof(__le64)];
	} iv;
	struct skcipher_request *req = NULL;
	DECLARE_CRYPTO_WAIT(wait);
	struct scatterlist dst, src;
	struct fscrypt_info *ci = inode->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_ctfm;
	int res = 0;

	BUG_ON(len == 0);

	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
	iv.index = cpu_to_le64(lblk_num);
	memset(iv.padding, 0, sizeof(iv.padding));

	if (ci->ci_essiv_tfm != NULL) {
		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
					  (u8 *)&iv);
	}

	req = skcipher_request_alloc(tfm, gfp_flags);
	if (!req) {
		printk_ratelimited(KERN_ERR
				"%s: crypto_request_alloc() failed\n",
				__func__);
		return -ENOMEM;
	}

	skcipher_request_set_callback(
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
		crypto_req_done, &wait);

	sg_init_table(&dst, 1);
	sg_set_page(&dst, dest_page, len, offs);
	sg_init_table(&src, 1);
	sg_set_page(&src, src_page, len, offs);
	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
	if (rw == FS_DECRYPT)
		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
	else
		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
	skcipher_request_free(req);
	if (res) {
		printk_ratelimited(KERN_ERR
			"%s: crypto_skcipher_encrypt() returned %d\n",
			__func__, res);
		return res;
	}
	return 0;
}

struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
				       gfp_t gfp_flags)
{
	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
	if (ctx->w.bounce_page == NULL)
		return ERR_PTR(-ENOMEM);
	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
	return ctx->w.bounce_page;
}

/**
 * fscypt_encrypt_page() - Encrypts a page
 * @inode:     The inode for which the encryption should take place
 * @page:      The page to encrypt. Must be locked for bounce-page
 *             encryption.
 * @len:       Length of data to encrypt in @page and encrypted
 *             data in returned page.
 * @offs:      Offset of data within @page and returned
 *             page holding encrypted data.
 * @lblk_num:  Logical block number. This must be unique for multiple
 *             calls with same inode, except when overwriting
 *             previously written data.
 * @gfp_flags: The gfp flag for memory allocation
 *
 * Encrypts @page using the ctx encryption context. Performs encryption
 * either in-place or into a newly allocated bounce page.
 * Called on the page write path.
 *
 * Bounce page allocation is the default.
 * In this case, the contents of @page are encrypted and stored in an
 * allocated bounce page. @page has to be locked and the caller must call
 * fscrypt_restore_control_page() on the returned ciphertext page to
 * release the bounce buffer and the encryption context.
 *
 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
 * fscrypt_operations. Here, the input-page is returned with its content
 * encrypted.
 *
 * Return: A page with the encrypted content on success. Else, an
 * error value or NULL.
 */
struct page *fscrypt_encrypt_page(const struct inode *inode,
				struct page *page,
				unsigned int len,
				unsigned int offs,
				u64 lblk_num, gfp_t gfp_flags)

{
	struct fscrypt_ctx *ctx;
	struct page *ciphertext_page = page;
	int err;

	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);

	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
		/* with inplace-encryption we just encrypt the page */
		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
					     ciphertext_page, len, offs,
					     gfp_flags);
		if (err)
			return ERR_PTR(err);

		return ciphertext_page;
	}

	BUG_ON(!PageLocked(page));

	ctx = fscrypt_get_ctx(inode, gfp_flags);
	if (IS_ERR(ctx))
		return (struct page *)ctx;

	/* The encryption operation will require a bounce page. */
	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
	if (IS_ERR(ciphertext_page))
		goto errout;

	ctx->w.control_page = page;
	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
				     page, ciphertext_page, len, offs,
				     gfp_flags);
	if (err) {
		ciphertext_page = ERR_PTR(err);
		goto errout;
	}
	SetPagePrivate(ciphertext_page);
	set_page_private(ciphertext_page, (unsigned long)ctx);
	lock_page(ciphertext_page);
	return ciphertext_page;

errout:
	fscrypt_release_ctx(ctx);
	return ciphertext_page;
}
EXPORT_SYMBOL(fscrypt_encrypt_page);

/**
 * fscrypt_decrypt_page() - Decrypts a page in-place
 * @inode:     The corresponding inode for the page to decrypt.
 * @page:      The page to decrypt. Must be locked in case
 *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
 * @len:       Number of bytes in @page to be decrypted.
 * @offs:      Start of data in @page.
 * @lblk_num:  Logical block number.
 *
 * Decrypts page in-place using the ctx encryption context.
 *
 * Called from the read completion callback.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
			unsigned int len, unsigned int offs, u64 lblk_num)
{
	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
		BUG_ON(!PageLocked(page));

	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
				      len, offs, GFP_NOFS);
}
EXPORT_SYMBOL(fscrypt_decrypt_page);

/*
 * Validate dentries for encrypted directories to make sure we aren't
 * potentially caching stale data after a key has been added or
 * removed.
 */
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
{
	struct dentry *dir;
	int dir_has_key, cached_with_key;

	if (flags & LOOKUP_RCU)
		return -ECHILD;

	dir = dget_parent(dentry);
	if (!IS_ENCRYPTED(d_inode(dir))) {
		dput(dir);
		return 0;
	}

	/* this should eventually be an flag in d_flags */
	spin_lock(&dentry->d_lock);
	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
	spin_unlock(&dentry->d_lock);
	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
	dput(dir);

	/*
	 * If the dentry was cached without the key, and it is a
	 * negative dentry, it might be a valid name.  We can't check
	 * if the key has since been made available due to locking
	 * reasons, so we fail the validation so ext4_lookup() can do
	 * this check.
	 *
	 * We also fail the validation if the dentry was created with
	 * the key present, but we no longer have the key, or vice versa.
	 */
	if ((!cached_with_key && d_is_negative(dentry)) ||
			(!cached_with_key && dir_has_key) ||
			(cached_with_key && !dir_has_key))
		return 0;
	return 1;
}

const struct dentry_operations fscrypt_d_ops = {
	.d_revalidate = fscrypt_d_revalidate,
};
EXPORT_SYMBOL(fscrypt_d_ops);

void fscrypt_restore_control_page(struct page *page)
{
	struct fscrypt_ctx *ctx;

	ctx = (struct fscrypt_ctx *)page_private(page);
	set_page_private(page, (unsigned long)NULL);
	ClearPagePrivate(page);
	unlock_page(page);
	fscrypt_release_ctx(ctx);
}
EXPORT_SYMBOL(fscrypt_restore_control_page);

static void fscrypt_destroy(void)
{
	struct fscrypt_ctx *pos, *n;

	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
		kmem_cache_free(fscrypt_ctx_cachep, pos);
	INIT_LIST_HEAD(&fscrypt_free_ctxs);
	mempool_destroy(fscrypt_bounce_page_pool);
	fscrypt_bounce_page_pool = NULL;
}

/**
 * fscrypt_initialize() - allocate major buffers for fs encryption.
 * @cop_flags:  fscrypt operations flags
 *
 * We only call this when we start accessing encrypted files, since it
 * results in memory getting allocated that wouldn't otherwise be used.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int fscrypt_initialize(unsigned int cop_flags)
{
	int i, res = -ENOMEM;

	/* No need to allocate a bounce page pool if this FS won't use it. */
	if (cop_flags & FS_CFLG_OWN_PAGES)
		return 0;

	mutex_lock(&fscrypt_init_mutex);
	if (fscrypt_bounce_page_pool)
		goto already_initialized;

	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
		struct fscrypt_ctx *ctx;

		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
		if (!ctx)
			goto fail;
		list_add(&ctx->free_list, &fscrypt_free_ctxs);
	}

	fscrypt_bounce_page_pool =
		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
	if (!fscrypt_bounce_page_pool)
		goto fail;

already_initialized:
	mutex_unlock(&fscrypt_init_mutex);
	return 0;
fail:
	fscrypt_destroy();
	mutex_unlock(&fscrypt_init_mutex);
	return res;
}

/**
 * fscrypt_init() - Set up for fs encryption.
 */
static int __init fscrypt_init(void)
{
	/*
	 * Use an unbound workqueue to allow bios to be decrypted in parallel
	 * even when they happen to complete on the same CPU.  This sacrifices
	 * locality, but it's worthwhile since decryption is CPU-intensive.
	 *
	 * Also use a high-priority workqueue to prioritize decryption work,
	 * which blocks reads from completing, over regular application tasks.
	 */
	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
						 WQ_UNBOUND | WQ_HIGHPRI,
						 num_online_cpus());
	if (!fscrypt_read_workqueue)
		goto fail;

	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
	if (!fscrypt_ctx_cachep)
		goto fail_free_queue;

	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
	if (!fscrypt_info_cachep)
		goto fail_free_ctx;

	return 0;

fail_free_ctx:
	kmem_cache_destroy(fscrypt_ctx_cachep);
fail_free_queue:
	destroy_workqueue(fscrypt_read_workqueue);
fail:
	return -ENOMEM;
}
module_init(fscrypt_init)

/**
 * fscrypt_exit() - Shutdown the fs encryption system
 */
static void __exit fscrypt_exit(void)
{
	fscrypt_destroy();

	if (fscrypt_read_workqueue)
		destroy_workqueue(fscrypt_read_workqueue);
	kmem_cache_destroy(fscrypt_ctx_cachep);
	kmem_cache_destroy(fscrypt_info_cachep);

	fscrypt_essiv_cleanup();
}
module_exit(fscrypt_exit);

MODULE_LICENSE("GPL");