summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/free-space-cache.c
blob: 3fdadd28e935f62c42964f0e350049f63dffb7e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/sched.h>
#include "ctree.h"
#include "free-space-cache.h"
#include "transaction.h"

struct btrfs_free_space {
	struct rb_node bytes_index;
	struct rb_node offset_index;
	u64 offset;
	u64 bytes;
};

static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
		info = rb_entry(parent, struct btrfs_free_space, offset_index);

		if (offset < info->offset)
			p = &(*p)->rb_left;
		else if (offset > info->offset)
			p = &(*p)->rb_right;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

static int tree_insert_bytes(struct rb_root *root, u64 bytes,
			     struct rb_node *node)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
		info = rb_entry(parent, struct btrfs_free_space, bytes_index);

		if (bytes < info->bytes)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
 * searches the tree for the given offset.
 *
 * fuzzy == 1: this is used for allocations where we are given a hint of where
 * to look for free space.  Because the hint may not be completely on an offset
 * mark, or the hint may no longer point to free space we need to fudge our
 * results a bit.  So we look for free space starting at or after offset with at
 * least bytes size.  We prefer to find as close to the given offset as we can.
 * Also if the offset is within a free space range, then we will return the free
 * space that contains the given offset, which means we can return a free space
 * chunk with an offset before the provided offset.
 *
 * fuzzy == 0: this is just a normal tree search.  Give us the free space that
 * starts at the given offset which is at least bytes size, and if its not there
 * return NULL.
 */
static struct btrfs_free_space *tree_search_offset(struct rb_root *root,
						   u64 offset, u64 bytes,
						   int fuzzy)
{
	struct rb_node *n = root->rb_node;
	struct btrfs_free_space *entry, *ret = NULL;

	while (n) {
		entry = rb_entry(n, struct btrfs_free_space, offset_index);

		if (offset < entry->offset) {
			if (fuzzy &&
			    (!ret || entry->offset < ret->offset) &&
			    (bytes <= entry->bytes))
				ret = entry;
			n = n->rb_left;
		} else if (offset > entry->offset) {
			if (fuzzy &&
			    (entry->offset + entry->bytes - 1) >= offset &&
			    bytes <= entry->bytes) {
				ret = entry;
				break;
			}
			n = n->rb_right;
		} else {
			if (bytes > entry->bytes) {
				n = n->rb_right;
				continue;
			}
			ret = entry;
			break;
		}
	}

	return ret;
}

/*
 * return a chunk at least bytes size, as close to offset that we can get.
 */
static struct btrfs_free_space *tree_search_bytes(struct rb_root *root,
						  u64 offset, u64 bytes)
{
	struct rb_node *n = root->rb_node;
	struct btrfs_free_space *entry, *ret = NULL;

	while (n) {
		entry = rb_entry(n, struct btrfs_free_space, bytes_index);

		if (bytes < entry->bytes) {
			/*
			 * We prefer to get a hole size as close to the size we
			 * are asking for so we don't take small slivers out of
			 * huge holes, but we also want to get as close to the
			 * offset as possible so we don't have a whole lot of
			 * fragmentation.
			 */
			if (offset <= entry->offset) {
				if (!ret)
					ret = entry;
				else if (entry->bytes < ret->bytes)
					ret = entry;
				else if (entry->offset < ret->offset)
					ret = entry;
			}
			n = n->rb_left;
		} else if (bytes > entry->bytes) {
			n = n->rb_right;
		} else {
			/*
			 * Ok we may have multiple chunks of the wanted size,
			 * so we don't want to take the first one we find, we
			 * want to take the one closest to our given offset, so
			 * keep searching just in case theres a better match.
			 */
			n = n->rb_right;
			if (offset > entry->offset)
				continue;
			else if (!ret || entry->offset < ret->offset)
				ret = entry;
		}
	}

	return ret;
}

static void unlink_free_space(struct btrfs_block_group_cache *block_group,
			      struct btrfs_free_space *info)
{
	rb_erase(&info->offset_index, &block_group->free_space_offset);
	rb_erase(&info->bytes_index, &block_group->free_space_bytes);
}

static int link_free_space(struct btrfs_block_group_cache *block_group,
			   struct btrfs_free_space *info)
{
	int ret = 0;


	BUG_ON(!info->bytes);
	ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
				 &info->offset_index);
	if (ret)
		return ret;

	ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes,
				&info->bytes_index);
	if (ret)
		return ret;

	return ret;
}

int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
			 u64 offset, u64 bytes)
{
	struct btrfs_free_space *right_info;
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *info = NULL;
	int ret = 0;

	info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;

	spin_lock(&block_group->tree_lock);

	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
	right_info = tree_search_offset(&block_group->free_space_offset,
					offset+bytes, 0, 0);
	left_info = tree_search_offset(&block_group->free_space_offset,
				       offset-1, 0, 1);

	if (right_info) {
		unlink_free_space(block_group, right_info);
		info->bytes += right_info->bytes;
		kfree(right_info);
	}

	if (left_info && left_info->offset + left_info->bytes == offset) {
		unlink_free_space(block_group, left_info);
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
		kfree(left_info);
	}

	ret = link_free_space(block_group, info);
	if (ret)
		kfree(info);

	spin_unlock(&block_group->tree_lock);

	if (ret) {
		printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret);
		if (ret == -EEXIST)
			BUG();
	}

	return ret;
}

int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
{
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&block_group->tree_lock);

	info = tree_search_offset(&block_group->free_space_offset, offset, 0,
				  1);
	if (info && info->offset == offset) {
		if (info->bytes < bytes) {
			printk(KERN_ERR "Found free space at %llu, size %llu,"
			       "trying to use %llu\n",
			       (unsigned long long)info->offset,
			       (unsigned long long)info->bytes,
			       (unsigned long long)bytes);
			WARN_ON(1);
			ret = -EINVAL;
			spin_unlock(&block_group->tree_lock);
			goto out;
		}
		unlink_free_space(block_group, info);

		if (info->bytes == bytes) {
			kfree(info);
			spin_unlock(&block_group->tree_lock);
			goto out;
		}

		info->offset += bytes;
		info->bytes -= bytes;

		ret = link_free_space(block_group, info);
		spin_unlock(&block_group->tree_lock);
		BUG_ON(ret);
	} else if (info && info->offset < offset &&
		   info->offset + info->bytes >= offset + bytes) {
		u64 old_start = info->offset;
		/*
		 * we're freeing space in the middle of the info,
		 * this can happen during tree log replay
		 *
		 * first unlink the old info and then
		 * insert it again after the hole we're creating
		 */
		unlink_free_space(block_group, info);
		if (offset + bytes < info->offset + info->bytes) {
			u64 old_end = info->offset + info->bytes;

			info->offset = offset + bytes;
			info->bytes = old_end - info->offset;
			ret = link_free_space(block_group, info);
			BUG_ON(ret);
		} else {
			/* the hole we're creating ends at the end
			 * of the info struct, just free the info
			 */
			kfree(info);
		}
		spin_unlock(&block_group->tree_lock);
		/* step two, insert a new info struct to cover anything
		 * before the hole
		 */
		ret = btrfs_add_free_space(block_group, old_start,
					   offset - old_start);
		BUG_ON(ret);
	} else {
		spin_unlock(&block_group->tree_lock);
		if (!info) {
			printk(KERN_ERR "couldn't find space %llu to free\n",
			       (unsigned long long)offset);
			printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n",
			       block_group->cached, block_group->key.objectid,
			       block_group->key.offset);
			btrfs_dump_free_space(block_group, bytes);
		} else if (info) {
			printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, "
			       "but wanted offset=%llu bytes=%llu\n",
			       info->offset, info->bytes, offset, bytes);
		}
		WARN_ON(1);
	}
out:
	return ret;
}

void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
		info = rb_entry(n, struct btrfs_free_space, offset_index);
		if (info->bytes >= bytes)
			count++;
		printk(KERN_ERR "entry offset %llu, bytes %llu\n", info->offset,
		       info->bytes);
	}
	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
	       "\n", count);
}

u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space *info;
	struct rb_node *n;
	u64 ret = 0;

	for (n = rb_first(&block_group->free_space_offset); n;
	     n = rb_next(n)) {
		info = rb_entry(n, struct btrfs_free_space, offset_index);
		ret += info->bytes;
	}

	return ret;
}

/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

	cluster->window_start = 0;
	node = rb_first(&cluster->root);
	while(node) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
		link_free_space(block_group, entry);
	}
	list_del_init(&cluster->block_group_list);

	btrfs_put_block_group(cluster->block_group);
	cluster->block_group = NULL;
	cluster->root.rb_node = NULL;
out:
	spin_unlock(&cluster->lock);
	return 0;
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space *info;
	struct rb_node *node;
	struct btrfs_free_cluster *cluster;
	struct btrfs_free_cluster *safe;

	spin_lock(&block_group->tree_lock);

	list_for_each_entry_safe(cluster, safe, &block_group->cluster_list,
				 block_group_list) {

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
	}

	while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, bytes_index);
		unlink_free_space(block_group, info);
		kfree(info);
		if (need_resched()) {
			spin_unlock(&block_group->tree_lock);
			cond_resched();
			spin_lock(&block_group->tree_lock);
		}
	}
	spin_unlock(&block_group->tree_lock);
}

u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
			       u64 offset, u64 bytes, u64 empty_size)
{
	struct btrfs_free_space *entry = NULL;
	u64 ret = 0;

	spin_lock(&block_group->tree_lock);
	entry = tree_search_offset(&block_group->free_space_offset, offset,
				   bytes + empty_size, 1);
	if (!entry)
		entry = tree_search_bytes(&block_group->free_space_bytes,
					  offset, bytes + empty_size);
	if (entry) {
		unlink_free_space(block_group, entry);
		ret = entry->offset;
		entry->offset += bytes;
		entry->bytes -= bytes;

		if (!entry->bytes)
			kfree(entry);
		else
			link_free_space(block_group, entry);
	}
	spin_unlock(&block_group->tree_lock);

	return ret;
}

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

	/* now return any extents the cluster had on it */
	spin_lock(&block_group->tree_lock);
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
	spin_unlock(&block_group->tree_lock);

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
			     u64 min_start)
{
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);

	while(1) {
		if (entry->bytes < bytes || entry->offset < min_start) {
			struct rb_node *node;

			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}
		ret = entry->offset;

		entry->offset += bytes;
		entry->bytes -= bytes;

		if (entry->bytes == 0) {
			rb_erase(&entry->offset_index, &cluster->root);
			kfree(entry);
		}
		break;
	}
out:
	spin_unlock(&cluster->lock);
	return ret;
}

/*
 * here we try to find a cluster of blocks in a block group.  The goal
 * is to find at least bytes free and up to empty_size + bytes free.
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	struct btrfs_free_space *next;
	struct btrfs_free_space *last;
	u64 min_bytes;
	u64 window_start;
	u64 window_free;
	u64 max_extent = 0;
	int total_retries = 0;
	int ret;

	/* for metadata, allow allocates with more holes */
	if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
		/*
		 * we want to do larger allocations when we are
		 * flushing out the delayed refs, it helps prevent
		 * making more work as we go along.
		 */
		if (trans->transaction->delayed_refs.flushing)
			min_bytes = max(bytes, (bytes + empty_size) >> 1);
		else
			min_bytes = max(bytes, (bytes + empty_size) >> 4);
	} else
		min_bytes = max(bytes, (bytes + empty_size) >> 2);

	spin_lock(&block_group->tree_lock);
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}
again:
	min_bytes = min(min_bytes, bytes + empty_size);
	entry = tree_search_bytes(&block_group->free_space_bytes,
				  offset, min_bytes);
	if (!entry) {
		ret = -ENOSPC;
		goto out;
	}
	window_start = entry->offset;
	window_free = entry->bytes;
	last = entry;
	max_extent = entry->bytes;

	while(1) {
		/* out window is just right, lets fill it */
		if (window_free >= bytes + empty_size)
			break;

		node = rb_next(&last->offset_index);
		if (!node) {
			ret = -ENOSPC;
			goto out;
		}
		next = rb_entry(node, struct btrfs_free_space, offset_index);

		/*
		 * we haven't filled the empty size and the window is
		 * very large.  reset and try again
		 */
		if (next->offset - window_start > (bytes + empty_size) * 2) {
			entry = next;
			window_start = entry->offset;
			window_free = entry->bytes;
			last = entry;
			max_extent = 0;
			total_retries++;
			if (total_retries % 256 == 0) {
				if (min_bytes >= (bytes + empty_size)) {
					ret = -ENOSPC;
					goto out;
				}
				/*
				 * grow our allocation a bit, we're not having
				 * much luck
				 */
				min_bytes *= 2;
				goto again;
			}
		} else {
			last = next;
			window_free += next->bytes;
			if (entry->bytes > max_extent)
				max_extent = entry->bytes;
		}
	}

	cluster->window_start = entry->offset;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 *
	 * The cluster includes an rbtree, but only uses the offset index
	 * of each free space cache entry.
	 */
	while(1) {
		node = rb_next(&entry->offset_index);
		unlink_free_space(block_group, entry);
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index);
		BUG_ON(ret);

		if (!node || entry == last)
			break;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}
	ret = 0;
	cluster->max_size = max_extent;
	atomic_inc(&block_group->count);
	list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
	cluster->block_group = block_group;
out:
	spin_unlock(&cluster->lock);
	spin_unlock(&block_group->tree_lock);

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
	cluster->root.rb_node = NULL;
	cluster->max_size = 0;
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}