1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
|
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include <linux/swap.h>
#include <linux/radix-tree.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/slab.h>
#include <linux/migrate.h>
#include <linux/ratelimit.h>
#include <linux/uuid.h>
#include <linux/semaphore.h>
#include <asm/unaligned.h>
#include "ctree.h"
#include "disk-io.h"
#include "hash.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "print-tree.h"
#include "locking.h"
#include "tree-log.h"
#include "free-space-cache.h"
#include "inode-map.h"
#include "check-integrity.h"
#include "rcu-string.h"
#include "dev-replace.h"
#include "raid56.h"
#include "sysfs.h"
#include "qgroup.h"
#ifdef CONFIG_X86
#include <asm/cpufeature.h>
#endif
static const struct extent_io_ops btree_extent_io_ops;
static void end_workqueue_fn(struct btrfs_work *work);
static void free_fs_root(struct btrfs_root *root);
static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
int read_only);
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
struct btrfs_root *root);
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
struct extent_io_tree *dirty_pages,
int mark);
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
struct extent_io_tree *pinned_extents);
static int btrfs_cleanup_transaction(struct btrfs_root *root);
static void btrfs_error_commit_super(struct btrfs_root *root);
/*
* btrfs_end_io_wq structs are used to do processing in task context when an IO
* is complete. This is used during reads to verify checksums, and it is used
* by writes to insert metadata for new file extents after IO is complete.
*/
struct btrfs_end_io_wq {
struct bio *bio;
bio_end_io_t *end_io;
void *private;
struct btrfs_fs_info *info;
int error;
enum btrfs_wq_endio_type metadata;
struct list_head list;
struct btrfs_work work;
};
static struct kmem_cache *btrfs_end_io_wq_cache;
int __init btrfs_end_io_wq_init(void)
{
btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
sizeof(struct btrfs_end_io_wq),
0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
NULL);
if (!btrfs_end_io_wq_cache)
return -ENOMEM;
return 0;
}
void btrfs_end_io_wq_exit(void)
{
if (btrfs_end_io_wq_cache)
kmem_cache_destroy(btrfs_end_io_wq_cache);
}
/*
* async submit bios are used to offload expensive checksumming
* onto the worker threads. They checksum file and metadata bios
* just before they are sent down the IO stack.
*/
struct async_submit_bio {
struct inode *inode;
struct bio *bio;
struct list_head list;
extent_submit_bio_hook_t *submit_bio_start;
extent_submit_bio_hook_t *submit_bio_done;
int rw;
int mirror_num;
unsigned long bio_flags;
/*
* bio_offset is optional, can be used if the pages in the bio
* can't tell us where in the file the bio should go
*/
u64 bio_offset;
struct btrfs_work work;
int error;
};
/*
* Lockdep class keys for extent_buffer->lock's in this root. For a given
* eb, the lockdep key is determined by the btrfs_root it belongs to and
* the level the eb occupies in the tree.
*
* Different roots are used for different purposes and may nest inside each
* other and they require separate keysets. As lockdep keys should be
* static, assign keysets according to the purpose of the root as indicated
* by btrfs_root->objectid. This ensures that all special purpose roots
* have separate keysets.
*
* Lock-nesting across peer nodes is always done with the immediate parent
* node locked thus preventing deadlock. As lockdep doesn't know this, use
* subclass to avoid triggering lockdep warning in such cases.
*
* The key is set by the readpage_end_io_hook after the buffer has passed
* csum validation but before the pages are unlocked. It is also set by
* btrfs_init_new_buffer on freshly allocated blocks.
*
* We also add a check to make sure the highest level of the tree is the
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
* needs update as well.
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
# error
# endif
static struct btrfs_lockdep_keyset {
u64 id; /* root objectid */
const char *name_stem; /* lock name stem */
char names[BTRFS_MAX_LEVEL + 1][20];
struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
} btrfs_lockdep_keysets[] = {
{ .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
{ .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
{ .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
{ .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
{ .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
{ .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
{ .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
{ .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
{ .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
{ .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
{ .id = 0, .name_stem = "tree" },
};
void __init btrfs_init_lockdep(void)
{
int i, j;
/* initialize lockdep class names */
for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
for (j = 0; j < ARRAY_SIZE(ks->names); j++)
snprintf(ks->names[j], sizeof(ks->names[j]),
"btrfs-%s-%02d", ks->name_stem, j);
}
}
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
int level)
{
struct btrfs_lockdep_keyset *ks;
BUG_ON(level >= ARRAY_SIZE(ks->keys));
/* find the matching keyset, id 0 is the default entry */
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
if (ks->id == objectid)
break;
lockdep_set_class_and_name(&eb->lock,
&ks->keys[level], ks->names[level]);
}
#endif
/*
* extents on the btree inode are pretty simple, there's one extent
* that covers the entire device
*/
static struct extent_map *btree_get_extent(struct inode *inode,
struct page *page, size_t pg_offset, u64 start, u64 len,
int create)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_map *em;
int ret;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (em) {
em->bdev =
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
read_unlock(&em_tree->lock);
goto out;
}
read_unlock(&em_tree->lock);
em = alloc_extent_map();
if (!em) {
em = ERR_PTR(-ENOMEM);
goto out;
}
em->start = 0;
em->len = (u64)-1;
em->block_len = (u64)-1;
em->block_start = 0;
em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em, 0);
if (ret == -EEXIST) {
free_extent_map(em);
em = lookup_extent_mapping(em_tree, start, len);
if (!em)
em = ERR_PTR(-EIO);
} else if (ret) {
free_extent_map(em);
em = ERR_PTR(ret);
}
write_unlock(&em_tree->lock);
out:
return em;
}
u32 btrfs_csum_data(char *data, u32 seed, size_t len)
{
return btrfs_crc32c(seed, data, len);
}
void btrfs_csum_final(u32 crc, char *result)
{
put_unaligned_le32(~crc, result);
}
/*
* compute the csum for a btree block, and either verify it or write it
* into the csum field of the block.
*/
static int csum_tree_block(struct btrfs_fs_info *fs_info,
struct extent_buffer *buf,
int verify)
{
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
char *result = NULL;
unsigned long len;
unsigned long cur_len;
unsigned long offset = BTRFS_CSUM_SIZE;
char *kaddr;
unsigned long map_start;
unsigned long map_len;
int err;
u32 crc = ~(u32)0;
unsigned long inline_result;
len = buf->len - offset;
while (len > 0) {
err = map_private_extent_buffer(buf, offset, 32,
&kaddr, &map_start, &map_len);
if (err)
return 1;
cur_len = min(len, map_len - (offset - map_start));
crc = btrfs_csum_data(kaddr + offset - map_start,
crc, cur_len);
len -= cur_len;
offset += cur_len;
}
if (csum_size > sizeof(inline_result)) {
result = kzalloc(csum_size, GFP_NOFS);
if (!result)
return 1;
} else {
result = (char *)&inline_result;
}
btrfs_csum_final(crc, result);
if (verify) {
if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
u32 val;
u32 found = 0;
memcpy(&found, result, csum_size);
read_extent_buffer(buf, &val, 0, csum_size);
btrfs_warn_rl(fs_info,
"%s checksum verify failed on %llu wanted %X found %X "
"level %d",
fs_info->sb->s_id, buf->start,
val, found, btrfs_header_level(buf));
if (result != (char *)&inline_result)
kfree(result);
return 1;
}
} else {
write_extent_buffer(buf, result, 0, csum_size);
}
if (result != (char *)&inline_result)
kfree(result);
return 0;
}
/*
* we can't consider a given block up to date unless the transid of the
* block matches the transid in the parent node's pointer. This is how we
* detect blocks that either didn't get written at all or got written
* in the wrong place.
*/
static int verify_parent_transid(struct extent_io_tree *io_tree,
struct extent_buffer *eb, u64 parent_transid,
int atomic)
{
struct extent_state *cached_state = NULL;
int ret;
bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
return 0;
if (atomic)
return -EAGAIN;
if (need_lock) {
btrfs_tree_read_lock(eb);
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
}
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
0, &cached_state);
if (extent_buffer_uptodate(eb) &&
btrfs_header_generation(eb) == parent_transid) {
ret = 0;
goto out;
}
btrfs_err_rl(eb->fs_info,
"parent transid verify failed on %llu wanted %llu found %llu",
eb->start,
parent_transid, btrfs_header_generation(eb));
ret = 1;
/*
* Things reading via commit roots that don't have normal protection,
* like send, can have a really old block in cache that may point at a
* block that has been free'd and re-allocated. So don't clear uptodate
* if we find an eb that is under IO (dirty/writeback) because we could
* end up reading in the stale data and then writing it back out and
* making everybody very sad.
*/
if (!extent_buffer_under_io(eb))
clear_extent_buffer_uptodate(eb);
out:
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
&cached_state, GFP_NOFS);
if (need_lock)
btrfs_tree_read_unlock_blocking(eb);
return ret;
}
/*
* Return 0 if the superblock checksum type matches the checksum value of that
* algorithm. Pass the raw disk superblock data.
*/
static int btrfs_check_super_csum(char *raw_disk_sb)
{
struct btrfs_super_block *disk_sb =
(struct btrfs_super_block *)raw_disk_sb;
u16 csum_type = btrfs_super_csum_type(disk_sb);
int ret = 0;
if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
u32 crc = ~(u32)0;
const int csum_size = sizeof(crc);
char result[csum_size];
/*
* The super_block structure does not span the whole
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
* is filled with zeros and is included in the checkum.
*/
crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
btrfs_csum_final(crc, result);
if (memcmp(raw_disk_sb, result, csum_size))
ret = 1;
}
if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
csum_type);
ret = 1;
}
return ret;
}
/*
* helper to read a given tree block, doing retries as required when
* the checksums don't match and we have alternate mirrors to try.
*/
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
struct extent_buffer *eb,
u64 start, u64 parent_transid)
{
struct extent_io_tree *io_tree;
int failed = 0;
int ret;
int num_copies = 0;
int mirror_num = 0;
int failed_mirror = 0;
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
while (1) {
ret = read_extent_buffer_pages(io_tree, eb, start,
WAIT_COMPLETE,
btree_get_extent, mirror_num);
if (!ret) {
if (!verify_parent_transid(io_tree, eb,
parent_transid, 0))
break;
else
ret = -EIO;
}
/*
* This buffer's crc is fine, but its contents are corrupted, so
* there is no reason to read the other copies, they won't be
* any less wrong.
*/
if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
break;
num_copies = btrfs_num_copies(root->fs_info,
eb->start, eb->len);
if (num_copies == 1)
break;
if (!failed_mirror) {
failed = 1;
failed_mirror = eb->read_mirror;
}
mirror_num++;
if (mirror_num == failed_mirror)
mirror_num++;
if (mirror_num > num_copies)
break;
}
if (failed && !ret && failed_mirror)
repair_eb_io_failure(root, eb, failed_mirror);
return ret;
}
/*
* checksum a dirty tree block before IO. This has extra checks to make sure
* we only fill in the checksum field in the first page of a multi-page block
*/
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
{
u64 start = page_offset(page);
u64 found_start;
struct extent_buffer *eb;
eb = (struct extent_buffer *)page->private;
if (page != eb->pages[0])
return 0;
found_start = btrfs_header_bytenr(eb);
if (WARN_ON(found_start != start || !PageUptodate(page)))
return 0;
csum_tree_block(fs_info, eb, 0);
return 0;
}
static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
struct extent_buffer *eb)
{
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
u8 fsid[BTRFS_UUID_SIZE];
int ret = 1;
read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
while (fs_devices) {
if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
ret = 0;
break;
}
fs_devices = fs_devices->seed;
}
return ret;
}
#define CORRUPT(reason, eb, root, slot) \
btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
"root=%llu, slot=%d", reason, \
btrfs_header_bytenr(eb), root->objectid, slot)
static noinline int check_leaf(struct btrfs_root *root,
struct extent_buffer *leaf)
{
struct btrfs_key key;
struct btrfs_key leaf_key;
u32 nritems = btrfs_header_nritems(leaf);
int slot;
if (nritems == 0)
return 0;
/* Check the 0 item */
if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
BTRFS_LEAF_DATA_SIZE(root)) {
CORRUPT("invalid item offset size pair", leaf, root, 0);
return -EIO;
}
/*
* Check to make sure each items keys are in the correct order and their
* offsets make sense. We only have to loop through nritems-1 because
* we check the current slot against the next slot, which verifies the
* next slot's offset+size makes sense and that the current's slot
* offset is correct.
*/
for (slot = 0; slot < nritems - 1; slot++) {
btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
btrfs_item_key_to_cpu(leaf, &key, slot + 1);
/* Make sure the keys are in the right order */
if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
CORRUPT("bad key order", leaf, root, slot);
return -EIO;
}
/*
* Make sure the offset and ends are right, remember that the
* item data starts at the end of the leaf and grows towards the
* front.
*/
if (btrfs_item_offset_nr(leaf, slot) !=
btrfs_item_end_nr(leaf, slot + 1)) {
CORRUPT("slot offset bad", leaf, root, slot);
return -EIO;
}
/*
* Check to make sure that we don't point outside of the leaf,
* just incase all the items are consistent to eachother, but
* all point outside of the leaf.
*/
if (btrfs_item_end_nr(leaf, slot) >
BTRFS_LEAF_DATA_SIZE(root)) {
CORRUPT("slot end outside of leaf", leaf, root, slot);
return -EIO;
}
}
return 0;
}
static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
u64 phy_offset, struct page *page,
u64 start, u64 end, int mirror)
{
u64 found_start;
int found_level;
struct extent_buffer *eb;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
int ret = 0;
int reads_done;
if (!page->private)
goto out;
eb = (struct extent_buffer *)page->private;
/* the pending IO might have been the only thing that kept this buffer
* in memory. Make sure we have a ref for all this other checks
*/
extent_buffer_get(eb);
reads_done = atomic_dec_and_test(&eb->io_pages);
if (!reads_done)
goto err;
eb->read_mirror = mirror;
if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ret = -EIO;
goto err;
}
found_start = btrfs_header_bytenr(eb);
if (found_start != eb->start) {
btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
found_start, eb->start);
ret = -EIO;
goto err;
}
if (check_tree_block_fsid(root->fs_info, eb)) {
btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
eb->start);
ret = -EIO;
goto err;
}
found_level = btrfs_header_level(eb);
if (found_level >= BTRFS_MAX_LEVEL) {
btrfs_err(root->fs_info, "bad tree block level %d",
(int)btrfs_header_level(eb));
ret = -EIO;
goto err;
}
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
eb, found_level);
ret = csum_tree_block(root->fs_info, eb, 1);
if (ret) {
ret = -EIO;
goto err;
}
/*
* If this is a leaf block and it is corrupt, set the corrupt bit so
* that we don't try and read the other copies of this block, just
* return -EIO.
*/
if (found_level == 0 && check_leaf(root, eb)) {
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
ret = -EIO;
}
if (!ret)
set_extent_buffer_uptodate(eb);
err:
if (reads_done &&
test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
btree_readahead_hook(root, eb, eb->start, ret);
if (ret) {
/*
* our io error hook is going to dec the io pages
* again, we have to make sure it has something
* to decrement
*/
atomic_inc(&eb->io_pages);
clear_extent_buffer_uptodate(eb);
}
free_extent_buffer(eb);
out:
return ret;
}
static int btree_io_failed_hook(struct page *page, int failed_mirror)
{
struct extent_buffer *eb;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
eb = (struct extent_buffer *)page->private;
set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
eb->read_mirror = failed_mirror;
atomic_dec(&eb->io_pages);
if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
btree_readahead_hook(root, eb, eb->start, -EIO);
return -EIO; /* we fixed nothing */
}
static void end_workqueue_bio(struct bio *bio)
{
struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
struct btrfs_fs_info *fs_info;
struct btrfs_workqueue *wq;
btrfs_work_func_t func;
fs_info = end_io_wq->info;
end_io_wq->error = bio->bi_error;
if (bio->bi_rw & REQ_WRITE) {
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
wq = fs_info->endio_meta_write_workers;
func = btrfs_endio_meta_write_helper;
} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
wq = fs_info->endio_freespace_worker;
func = btrfs_freespace_write_helper;
} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
wq = fs_info->endio_raid56_workers;
func = btrfs_endio_raid56_helper;
} else {
wq = fs_info->endio_write_workers;
func = btrfs_endio_write_helper;
}
} else {
if (unlikely(end_io_wq->metadata ==
BTRFS_WQ_ENDIO_DIO_REPAIR)) {
wq = fs_info->endio_repair_workers;
func = btrfs_endio_repair_helper;
} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
wq = fs_info->endio_raid56_workers;
func = btrfs_endio_raid56_helper;
} else if (end_io_wq->metadata) {
wq = fs_info->endio_meta_workers;
func = btrfs_endio_meta_helper;
} else {
wq = fs_info->endio_workers;
func = btrfs_endio_helper;
}
}
btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
btrfs_queue_work(wq, &end_io_wq->work);
}
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
enum btrfs_wq_endio_type metadata)
{
struct btrfs_end_io_wq *end_io_wq;
end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
if (!end_io_wq)
return -ENOMEM;
end_io_wq->private = bio->bi_private;
end_io_wq->end_io = bio->bi_end_io;
end_io_wq->info = info;
end_io_wq->error = 0;
end_io_wq->bio = bio;
end_io_wq->metadata = metadata;
bio->bi_private = end_io_wq;
bio->bi_end_io = end_workqueue_bio;
return 0;
}
unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
{
unsigned long limit = min_t(unsigned long,
info->thread_pool_size,
info->fs_devices->open_devices);
return 256 * limit;
}
static void run_one_async_start(struct btrfs_work *work)
{
struct async_submit_bio *async;
int ret;
async = container_of(work, struct async_submit_bio, work);
ret = async->submit_bio_start(async->inode, async->rw, async->bio,
async->mirror_num, async->bio_flags,
async->bio_offset);
if (ret)
async->error = ret;
}
static void run_one_async_done(struct btrfs_work *work)
{
struct btrfs_fs_info *fs_info;
struct async_submit_bio *async;
int limit;
async = container_of(work, struct async_submit_bio, work);
fs_info = BTRFS_I(async->inode)->root->fs_info;
limit = btrfs_async_submit_limit(fs_info);
limit = limit * 2 / 3;
/*
* atomic_dec_return implies a barrier for waitqueue_active
*/
if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
waitqueue_active(&fs_info->async_submit_wait))
wake_up(&fs_info->async_submit_wait);
/* If an error occured we just want to clean up the bio and move on */
if (async->error) {
async->bio->bi_error = async->error;
bio_endio(async->bio);
return;
}
async->submit_bio_done(async->inode, async->rw, async->bio,
async->mirror_num, async->bio_flags,
async->bio_offset);
}
static void run_one_async_free(struct btrfs_work *work)
{
struct async_submit_bio *async;
async = container_of(work, struct async_submit_bio, work);
kfree(async);
}
int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
int rw, struct bio *bio, int mirror_num,
unsigned long bio_flags,
u64 bio_offset,
extent_submit_bio_hook_t *submit_bio_start,
extent_submit_bio_hook_t *submit_bio_done)
{
struct async_submit_bio *async;
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return -ENOMEM;
async->inode = inode;
async->rw = rw;
async->bio = bio;
async->mirror_num = mirror_num;
async->submit_bio_start = submit_bio_start;
async->submit_bio_done = submit_bio_done;
btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
run_one_async_done, run_one_async_free);
async->bio_flags = bio_flags;
async->bio_offset = bio_offset;
async->error = 0;
atomic_inc(&fs_info->nr_async_submits);
if (rw & REQ_SYNC)
btrfs_set_work_high_priority(&async->work);
btrfs_queue_work(fs_info->workers, &async->work);
while (atomic_read(&fs_info->async_submit_draining) &&
atomic_read(&fs_info->nr_async_submits)) {
wait_event(fs_info->async_submit_wait,
(atomic_read(&fs_info->nr_async_submits) == 0));
}
return 0;
}
static int btree_csum_one_bio(struct bio *bio)
{
struct bio_vec *bvec;
struct btrfs_root *root;
int i, ret = 0;
bio_for_each_segment_all(bvec, bio, i) {
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
if (ret)
break;
}
return ret;
}
static int __btree_submit_bio_start(struct inode *inode, int rw,
struct bio *bio, int mirror_num,
unsigned long bio_flags,
u64 bio_offset)
{
/*
* when we're called for a write, we're already in the async
* submission context. Just jump into btrfs_map_bio
*/
return btree_csum_one_bio(bio);
}
static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
int mirror_num, unsigned long bio_flags,
u64 bio_offset)
{
int ret;
/*
* when we're called for a write, we're already in the async
* submission context. Just jump into btrfs_map_bio
*/
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
if (ret) {
bio->bi_error = ret;
bio_endio(bio);
}
return ret;
}
static int check_async_write(struct inode *inode, unsigned long bio_flags)
{
if (bio_flags & EXTENT_BIO_TREE_LOG)
return 0;
#ifdef CONFIG_X86
if (cpu_has_xmm4_2)
return 0;
#endif
return 1;
}
static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
int mirror_num, unsigned long bio_flags,
u64 bio_offset)
{
int async = check_async_write(inode, bio_flags);
int ret;
if (!(rw & REQ_WRITE)) {
/*
* called for a read, do the setup so that checksum validation
* can happen in the async kernel threads
*/
ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bio, BTRFS_WQ_ENDIO_METADATA);
if (ret)
goto out_w_error;
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
mirror_num, 0);
} else if (!async) {
ret = btree_csum_one_bio(bio);
if (ret)
goto out_w_error;
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
mirror_num, 0);
} else {
/*
* kthread helpers are used to submit writes so that
* checksumming can happen in parallel across all CPUs
*/
ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
inode, rw, bio, mirror_num, 0,
bio_offset,
__btree_submit_bio_start,
__btree_submit_bio_done);
}
if (ret)
goto out_w_error;
return 0;
out_w_error:
bio->bi_error = ret;
bio_endio(bio);
return ret;
}
#ifdef CONFIG_MIGRATION
static int btree_migratepage(struct address_space *mapping,
struct page *newpage, struct page *page,
enum migrate_mode mode)
{
/*
* we can't safely write a btree page from here,
* we haven't done the locking hook
*/
if (PageDirty(page))
return -EAGAIN;
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (page_has_private(page) &&
!try_to_release_page(page, GFP_KERNEL))
return -EAGAIN;
return migrate_page(mapping, newpage, page, mode);
}
#endif
static int btree_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct btrfs_fs_info *fs_info;
int ret;
if (wbc->sync_mode == WB_SYNC_NONE) {
if (wbc->for_kupdate)
return 0;
fs_info = BTRFS_I(mapping->host)->root->fs_info;
/* this is a bit racy, but that's ok */
ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH);
if (ret < 0)
return 0;
}
return btree_write_cache_pages(mapping, wbc);
}
static int btree_readpage(struct file *file, struct page *page)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_read_full_page(tree, page, btree_get_extent, 0);
}
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
{
if (PageWriteback(page) || PageDirty(page))
return 0;
return try_release_extent_buffer(page);
}
static void btree_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
extent_invalidatepage(tree, page, offset);
btree_releasepage(page, GFP_NOFS);
if (PagePrivate(page)) {
btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
"page private not zero on page %llu",
(unsigned long long)page_offset(page));
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
}
static int btree_set_page_dirty(struct page *page)
{
#ifdef DEBUG
struct extent_buffer *eb;
BUG_ON(!PagePrivate(page));
eb = (struct extent_buffer *)page->private;
BUG_ON(!eb);
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
BUG_ON(!atomic_read(&eb->refs));
btrfs_assert_tree_locked(eb);
#endif
return __set_page_dirty_nobuffers(page);
}
static const struct address_space_operations btree_aops = {
.readpage = btree_readpage,
.writepages = btree_writepages,
.releasepage = btree_releasepage,
.invalidatepage = btree_invalidatepage,
#ifdef CONFIG_MIGRATION
.migratepage = btree_migratepage,
#endif
.set_page_dirty = btree_set_page_dirty,
};
void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
buf = btrfs_find_create_tree_block(root, bytenr);
if (!buf)
return;
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
buf, 0, WAIT_NONE, btree_get_extent, 0);
free_extent_buffer(buf);
}
int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
int mirror_num, struct extent_buffer **eb)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
int ret;
buf = btrfs_find_create_tree_block(root, bytenr);
if (!buf)
return 0;
set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
btree_get_extent, mirror_num);
if (ret) {
free_extent_buffer(buf);
return ret;
}
if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
free_extent_buffer(buf);
return -EIO;
} else if (extent_buffer_uptodate(buf)) {
*eb = buf;
} else {
free_extent_buffer(buf);
}
return 0;
}
struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
u64 bytenr)
{
return find_extent_buffer(fs_info, bytenr);
}
struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
u64 bytenr)
{
if (btrfs_test_is_dummy_root(root))
return alloc_test_extent_buffer(root->fs_info, bytenr);
return alloc_extent_buffer(root->fs_info, bytenr);
}
int btrfs_write_tree_block(struct extent_buffer *buf)
{
return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
buf->start + buf->len - 1);
}
int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
{
return filemap_fdatawait_range(buf->pages[0]->mapping,
buf->start, buf->start + buf->len - 1);
}
struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
u64 parent_transid)
{
struct extent_buffer *buf = NULL;
int ret;
buf = btrfs_find_create_tree_block(root, bytenr);
if (!buf)
return ERR_PTR(-ENOMEM);
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
if (ret) {
free_extent_buffer(buf);
return ERR_PTR(ret);
}
return buf;
}
void clean_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info,
struct extent_buffer *buf)
{
if (btrfs_header_generation(buf) ==
fs_info->running_transaction->transid) {
btrfs_assert_tree_locked(buf);
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
__percpu_counter_add(&fs_info->dirty_metadata_bytes,
-buf->len,
fs_info->dirty_metadata_batch);
/* ugh, clear_extent_buffer_dirty needs to lock the page */
btrfs_set_lock_blocking(buf);
clear_extent_buffer_dirty(buf);
}
}
}
static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
{
struct btrfs_subvolume_writers *writers;
int ret;
writers = kmalloc(sizeof(*writers), GFP_NOFS);
if (!writers)
return ERR_PTR(-ENOMEM);
ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
if (ret < 0) {
kfree(writers);
return ERR_PTR(ret);
}
init_waitqueue_head(&writers->wait);
return writers;
}
static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
{
percpu_counter_destroy(&writers->counter);
kfree(writers);
}
static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
struct btrfs_root *root, struct btrfs_fs_info *fs_info,
u64 objectid)
{
root->node = NULL;
root->commit_root = NULL;
root->sectorsize = sectorsize;
root->nodesize = nodesize;
root->stripesize = stripesize;
root->state = 0;
root->orphan_cleanup_state = 0;
root->objectid = objectid;
root->last_trans = 0;
root->highest_objectid = 0;
root->nr_delalloc_inodes = 0;
root->nr_ordered_extents = 0;
root->name = NULL;
root->inode_tree = RB_ROOT;
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
root->block_rsv = NULL;
root->orphan_block_rsv = NULL;
INIT_LIST_HEAD(&root->dirty_list);
INIT_LIST_HEAD(&root->root_list);
INIT_LIST_HEAD(&root->delalloc_inodes);
INIT_LIST_HEAD(&root->delalloc_root);
INIT_LIST_HEAD(&root->ordered_extents);
INIT_LIST_HEAD(&root->ordered_root);
INIT_LIST_HEAD(&root->logged_list[0]);
INIT_LIST_HEAD(&root->logged_list[1]);
spin_lock_init(&root->orphan_lock);
spin_lock_init(&root->inode_lock);
spin_lock_init(&root->delalloc_lock);
spin_lock_init(&root->ordered_extent_lock);
spin_lock_init(&root->accounting_lock);
spin_lock_init(&root->log_extents_lock[0]);
spin_lock_init(&root->log_extents_lock[1]);
mutex_init(&root->objectid_mutex);
mutex_init(&root->log_mutex);
mutex_init(&root->ordered_extent_mutex);
mutex_init(&root->delalloc_mutex);
init_waitqueue_head(&root->log_writer_wait);
init_waitqueue_head(&root->log_commit_wait[0]);
init_waitqueue_head(&root->log_commit_wait[1]);
INIT_LIST_HEAD(&root->log_ctxs[0]);
INIT_LIST_HEAD(&root->log_ctxs[1]);
atomic_set(&root->log_commit[0], 0);
atomic_set(&root->log_commit[1], 0);
atomic_set(&root->log_writers, 0);
atomic_set(&root->log_batch, 0);
atomic_set(&root->orphan_inodes, 0);
atomic_set(&root->refs, 1);
atomic_set(&root->will_be_snapshoted, 0);
root->log_transid = 0;
root->log_transid_committed = -1;
root->last_log_commit = 0;
if (fs_info)
extent_io_tree_init(&root->dirty_log_pages,
fs_info->btree_inode->i_mapping);
memset(&root->root_key, 0, sizeof(root->root_key));
memset(&root->root_item, 0, sizeof(root->root_item));
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
if (fs_info)
root->defrag_trans_start = fs_info->generation;
else
root->defrag_trans_start = 0;
root->root_key.objectid = objectid;
root->anon_dev = 0;
spin_lock_init(&root->root_item_lock);
}
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
if (root)
root->fs_info = fs_info;
return root;
}
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
struct btrfs_root *btrfs_alloc_dummy_root(void)
{
struct btrfs_root *root;
root = btrfs_alloc_root(NULL);
if (!root)
return ERR_PTR(-ENOMEM);
__setup_root(4096, 4096, 4096, root, NULL, 1);
set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
root->alloc_bytenr = 0;
return root;
}
#endif
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
struct extent_buffer *leaf;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *root;
struct btrfs_key key;
int ret = 0;
uuid_le uuid;
root = btrfs_alloc_root(fs_info);
if (!root)
return ERR_PTR(-ENOMEM);
__setup_root(tree_root->nodesize, tree_root->sectorsize,
tree_root->stripesize, root, fs_info, objectid);
root->root_key.objectid = objectid;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = 0;
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
leaf = NULL;
goto fail;
}
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
btrfs_set_header_bytenr(leaf, leaf->start);
btrfs_set_header_generation(leaf, trans->transid);
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(leaf, objectid);
root->node = leaf;
write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
BTRFS_FSID_SIZE);
write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
btrfs_header_chunk_tree_uuid(leaf),
BTRFS_UUID_SIZE);
btrfs_mark_buffer_dirty(leaf);
root->commit_root = btrfs_root_node(root);
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
root->root_item.flags = 0;
root->root_item.byte_limit = 0;
btrfs_set_root_bytenr(&root->root_item, leaf->start);
btrfs_set_root_generation(&root->root_item, trans->transid);
btrfs_set_root_level(&root->root_item, 0);
btrfs_set_root_refs(&root->root_item, 1);
btrfs_set_root_used(&root->root_item, leaf->len);
btrfs_set_root_last_snapshot(&root->root_item, 0);
btrfs_set_root_dirid(&root->root_item, 0);
uuid_le_gen(&uuid);
memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
root->root_item.drop_level = 0;
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = 0;
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
if (ret)
goto fail;
btrfs_tree_unlock(leaf);
return root;
fail:
if (leaf) {
btrfs_tree_unlock(leaf);
free_extent_buffer(root->commit_root);
free_extent_buffer(leaf);
}
kfree(root);
return ERR_PTR(ret);
}
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct btrfs_root *tree_root = fs_info->tree_root;
struct extent_buffer *leaf;
root = btrfs_alloc_root(fs_info);
if (!root)
return ERR_PTR(-ENOMEM);
__setup_root(tree_root->nodesize, tree_root->sectorsize,
tree_root->stripesize, root, fs_info,
BTRFS_TREE_LOG_OBJECTID);
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
/*
* DON'T set REF_COWS for log trees
*
* log trees do not get reference counted because they go away
* before a real commit is actually done. They do store pointers
* to file data extents, and those reference counts still get
* updated (along with back refs to the log tree).
*/
leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
NULL, 0, 0, 0);
if (IS_ERR(leaf)) {
kfree(root);
return ERR_CAST(leaf);
}
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
btrfs_set_header_bytenr(leaf, leaf->start);
btrfs_set_header_generation(leaf, trans->transid);
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
root->node = leaf;
write_extent_buffer(root->node, root->fs_info->fsid,
btrfs_header_fsid(), BTRFS_FSID_SIZE);
btrfs_mark_buffer_dirty(root->node);
btrfs_tree_unlock(root->node);
return root;
}
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *log_root;
log_root = alloc_log_tree(trans, fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
WARN_ON(fs_info->log_root_tree);
fs_info->log_root_tree = log_root;
return 0;
}
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_root *log_root;
struct btrfs_inode_item *inode_item;
log_root = alloc_log_tree(trans, root->fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
log_root->last_trans = trans->transid;
log_root->root_key.offset = root->root_key.objectid;
inode_item = &log_root->root_item.inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
btrfs_set_root_node(&log_root->root_item, log_root->node);
WARN_ON(root->log_root);
root->log_root = log_root;
root->log_transid = 0;
root->log_transid_committed = -1;
root->last_log_commit = 0;
return 0;
}
static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
struct btrfs_key *key)
{
struct btrfs_root *root;
struct btrfs_fs_info *fs_info = tree_root->fs_info;
struct btrfs_path *path;
u64 generation;
int ret;
path = btrfs_alloc_path();
if (!path)
return ERR_PTR(-ENOMEM);
root = btrfs_alloc_root(fs_info);
if (!root) {
ret = -ENOMEM;
goto alloc_fail;
}
__setup_root(tree_root->nodesize, tree_root->sectorsize,
tree_root->stripesize, root, fs_info, key->objectid);
ret = btrfs_find_root(tree_root, key, path,
&root->root_item, &root->root_key);
if (ret) {
if (ret > 0)
ret = -ENOENT;
goto find_fail;
}
generation = btrfs_root_generation(&root->root_item);
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
generation);
if (IS_ERR(root->node)) {
ret = PTR_ERR(root->node);
goto find_fail;
} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
ret = -EIO;
free_extent_buffer(root->node);
goto find_fail;
}
root->commit_root = btrfs_root_node(root);
out:
btrfs_free_path(path);
return root;
find_fail:
kfree(root);
alloc_fail:
root = ERR_PTR(ret);
goto out;
}
struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
struct btrfs_key *location)
{
struct btrfs_root *root;
root = btrfs_read_tree_root(tree_root, location);
if (IS_ERR(root))
return root;
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
set_bit(BTRFS_ROOT_REF_COWS, &root->state);
btrfs_check_and_init_root_item(&root->root_item);
}
return root;
}
int btrfs_init_fs_root(struct btrfs_root *root)
{
int ret;
struct btrfs_subvolume_writers *writers;
root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
GFP_NOFS);
if (!root->free_ino_pinned || !root->free_ino_ctl) {
ret = -ENOMEM;
goto fail;
}
writers = btrfs_alloc_subvolume_writers();
if (IS_ERR(writers)) {
ret = PTR_ERR(writers);
goto fail;
}
root->subv_writers = writers;
btrfs_init_free_ino_ctl(root);
spin_lock_init(&root->ino_cache_lock);
init_waitqueue_head(&root->ino_cache_wait);
ret = get_anon_bdev(&root->anon_dev);
if (ret)
goto free_writers;
return 0;
free_writers:
btrfs_free_subvolume_writers(root->subv_writers);
fail:
kfree(root->free_ino_ctl);
kfree(root->free_ino_pinned);
return ret;
}
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
u64 root_id)
{
struct btrfs_root *root;
spin_lock(&fs_info->fs_roots_radix_lock);
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)root_id);
spin_unlock(&fs_info->fs_roots_radix_lock);
return root;
}
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
int ret;
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
if (ret)
return ret;
spin_lock(&fs_info->fs_roots_radix_lock);
ret = radix_tree_insert(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
root);
if (ret == 0)
set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
spin_unlock(&fs_info->fs_roots_radix_lock);
radix_tree_preload_end();
return ret;
}
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_key *location,
bool check_ref)
{
struct btrfs_root *root;
struct btrfs_path *path;
struct btrfs_key key;
int ret;
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
return fs_info->tree_root;
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
return fs_info->extent_root;
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
return fs_info->chunk_root;
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
return fs_info->dev_root;
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
return fs_info->csum_root;
if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
return fs_info->quota_root ? fs_info->quota_root :
ERR_PTR(-ENOENT);
if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
return fs_info->uuid_root ? fs_info->uuid_root :
ERR_PTR(-ENOENT);
again:
root = btrfs_lookup_fs_root(fs_info, location->objectid);
if (root) {
if (check_ref && btrfs_root_refs(&root->root_item) == 0)
return ERR_PTR(-ENOENT);
return root;
}
root = btrfs_read_fs_root(fs_info->tree_root, location);
if (IS_ERR(root))
return root;
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
ret = -ENOENT;
goto fail;
}
ret = btrfs_init_fs_root(root);
if (ret)
goto fail;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto fail;
}
key.objectid = BTRFS_ORPHAN_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = location->objectid;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
btrfs_free_path(path);
if (ret < 0)
goto fail;
if (ret == 0)
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
ret = btrfs_insert_fs_root(fs_info, root);
if (ret) {
if (ret == -EEXIST) {
free_fs_root(root);
goto again;
}
goto fail;
}
return root;
fail:
free_fs_root(root);
return ERR_PTR(ret);
}
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
{
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
int ret = 0;
struct btrfs_device *device;
struct backing_dev_info *bdi;
rcu_read_lock();
list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
if (!device->bdev)
continue;
bdi = blk_get_backing_dev_info(device->bdev);
if (bdi_congested(bdi, bdi_bits)) {
ret = 1;
break;
}
}
rcu_read_unlock();
return ret;
}
static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
{
int err;
err = bdi_setup_and_register(bdi, "btrfs");
if (err)
return err;
bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
bdi->congested_fn = btrfs_congested_fn;
bdi->congested_data = info;
bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
return 0;
}
/*
* called by the kthread helper functions to finally call the bio end_io
* functions. This is where read checksum verification actually happens
*/
static void end_workqueue_fn(struct btrfs_work *work)
{
struct bio *bio;
struct btrfs_end_io_wq *end_io_wq;
end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
bio = end_io_wq->bio;
bio->bi_error = end_io_wq->error;
bio->bi_private = end_io_wq->private;
bio->bi_end_io = end_io_wq->end_io;
kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
bio_endio(bio);
}
static int cleaner_kthread(void *arg)
{
struct btrfs_root *root = arg;
int again;
struct btrfs_trans_handle *trans;
do {
again = 0;
/* Make the cleaner go to sleep early. */
if (btrfs_need_cleaner_sleep(root))
goto sleep;
if (!mutex_trylock(&root->fs_info->cleaner_mutex))
goto sleep;
/*
* Avoid the problem that we change the status of the fs
* during the above check and trylock.
*/
if (btrfs_need_cleaner_sleep(root)) {
mutex_unlock(&root->fs_info->cleaner_mutex);
goto sleep;
}
btrfs_run_delayed_iputs(root);
again = btrfs_clean_one_deleted_snapshot(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
/*
* The defragger has dealt with the R/O remount and umount,
* needn't do anything special here.
*/
btrfs_run_defrag_inodes(root->fs_info);
/*
* Acquires fs_info->delete_unused_bgs_mutex to avoid racing
* with relocation (btrfs_relocate_chunk) and relocation
* acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
* after acquiring fs_info->delete_unused_bgs_mutex. So we
* can't hold, nor need to, fs_info->cleaner_mutex when deleting
* unused block groups.
*/
btrfs_delete_unused_bgs(root->fs_info);
sleep:
if (!try_to_freeze() && !again) {
set_current_state(TASK_INTERRUPTIBLE);
if (!kthread_should_stop())
schedule();
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
/*
* Transaction kthread is stopped before us and wakes us up.
* However we might have started a new transaction and COWed some
* tree blocks when deleting unused block groups for example. So
* make sure we commit the transaction we started to have a clean
* shutdown when evicting the btree inode - if it has dirty pages
* when we do the final iput() on it, eviction will trigger a
* writeback for it which will fail with null pointer dereferences
* since work queues and other resources were already released and
* destroyed by the time the iput/eviction/writeback is made.
*/
trans = btrfs_attach_transaction(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
btrfs_err(root->fs_info,
"cleaner transaction attach returned %ld",
PTR_ERR(trans));
} else {
int ret;
ret = btrfs_commit_transaction(trans, root);
if (ret)
btrfs_err(root->fs_info,
"cleaner open transaction commit returned %d",
ret);
}
return 0;
}
static int transaction_kthread(void *arg)
{
struct btrfs_root *root = arg;
struct btrfs_trans_handle *trans;
struct btrfs_transaction *cur;
u64 transid;
unsigned long now;
unsigned long delay;
bool cannot_commit;
do {
cannot_commit = false;
delay = HZ * root->fs_info->commit_interval;
mutex_lock(&root->fs_info->transaction_kthread_mutex);
spin_lock(&root->fs_info->trans_lock);
cur = root->fs_info->running_transaction;
if (!cur) {
spin_unlock(&root->fs_info->trans_lock);
goto sleep;
}
now = get_seconds();
if (cur->state < TRANS_STATE_BLOCKED &&
(now < cur->start_time ||
now - cur->start_time < root->fs_info->commit_interval)) {
spin_unlock(&root->fs_info->trans_lock);
delay = HZ * 5;
goto sleep;
}
transid = cur->transid;
spin_unlock(&root->fs_info->trans_lock);
/* If the file system is aborted, this will always fail. */
trans = btrfs_attach_transaction(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
cannot_commit = true;
goto sleep;
}
if (transid == trans->transid) {
btrfs_commit_transaction(trans, root);
} else {
btrfs_end_transaction(trans, root);
}
sleep:
wake_up_process(root->fs_info->cleaner_kthread);
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
&root->fs_info->fs_state)))
btrfs_cleanup_transaction(root);
if (!try_to_freeze()) {
set_current_state(TASK_INTERRUPTIBLE);
if (!kthread_should_stop() &&
(!btrfs_transaction_blocked(root->fs_info) ||
cannot_commit))
schedule_timeout(delay);
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
return 0;
}
/*
* this will find the highest generation in the array of
* root backups. The index of the highest array is returned,
* or -1 if we can't find anything.
*
* We check to make sure the array is valid by comparing the
* generation of the latest root in the array with the generation
* in the super block. If they don't match we pitch it.
*/
static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
{
u64 cur;
int newest_index = -1;
struct btrfs_root_backup *root_backup;
int i;
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
root_backup = info->super_copy->super_roots + i;
cur = btrfs_backup_tree_root_gen(root_backup);
if (cur == newest_gen)
newest_index = i;
}
/* check to see if we actually wrapped around */
if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
root_backup = info->super_copy->super_roots;
cur = btrfs_backup_tree_root_gen(root_backup);
if (cur == newest_gen)
newest_index = 0;
}
return newest_index;
}
/*
* find the oldest backup so we know where to store new entries
* in the backup array. This will set the backup_root_index
* field in the fs_info struct
*/
static void find_oldest_super_backup(struct btrfs_fs_info *info,
u64 newest_gen)
{
int newest_index = -1;
newest_index = find_newest_super_backup(info, newest_gen);
/* if there was garbage in there, just move along */
if (newest_index == -1) {
info->backup_root_index = 0;
} else {
info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
}
}
/*
* copy all the root pointers into the super backup array.
* this will bump the backup pointer by one when it is
* done
*/
static void backup_super_roots(struct btrfs_fs_info *info)
{
int next_backup;
struct btrfs_root_backup *root_backup;
int last_backup;
next_backup = info->backup_root_index;
last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
BTRFS_NUM_BACKUP_ROOTS;
/*
* just overwrite the last backup if we're at the same generation
* this happens only at umount
*/
root_backup = info->super_for_commit->super_roots + last_backup;
if (btrfs_backup_tree_root_gen(root_backup) ==
btrfs_header_generation(info->tree_root->node))
next_backup = last_backup;
root_backup = info->super_for_commit->super_roots + next_backup;
/*
* make sure all of our padding and empty slots get zero filled
* regardless of which ones we use today
*/
memset(root_backup, 0, sizeof(*root_backup));
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
btrfs_set_backup_tree_root_gen(root_backup,
btrfs_header_generation(info->tree_root->node));
btrfs_set_backup_tree_root_level(root_backup,
btrfs_header_level(info->tree_root->node));
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
btrfs_set_backup_chunk_root_gen(root_backup,
btrfs_header_generation(info->chunk_root->node));
btrfs_set_backup_chunk_root_level(root_backup,
btrfs_header_level(info->chunk_root->node));
btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
btrfs_set_backup_extent_root_gen(root_backup,
btrfs_header_generation(info->extent_root->node));
btrfs_set_backup_extent_root_level(root_backup,
btrfs_header_level(info->extent_root->node));
/*
* we might commit during log recovery, which happens before we set
* the fs_root. Make sure it is valid before we fill it in.
*/
if (info->fs_root && info->fs_root->node) {
btrfs_set_backup_fs_root(root_backup,
info->fs_root->node->start);
btrfs_set_backup_fs_root_gen(root_backup,
btrfs_header_generation(info->fs_root->node));
btrfs_set_backup_fs_root_level(root_backup,
btrfs_header_level(info->fs_root->node));
}
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
btrfs_set_backup_dev_root_gen(root_backup,
btrfs_header_generation(info->dev_root->node));
btrfs_set_backup_dev_root_level(root_backup,
btrfs_header_level(info->dev_root->node));
btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
btrfs_set_backup_csum_root_gen(root_backup,
btrfs_header_generation(info->csum_root->node));
btrfs_set_backup_csum_root_level(root_backup,
btrfs_header_level(info->csum_root->node));
btrfs_set_backup_total_bytes(root_backup,
btrfs_super_total_bytes(info->super_copy));
btrfs_set_backup_bytes_used(root_backup,
btrfs_super_bytes_used(info->super_copy));
btrfs_set_backup_num_devices(root_backup,
btrfs_super_num_devices(info->super_copy));
/*
* if we don't copy this out to the super_copy, it won't get remembered
* for the next commit
*/
memcpy(&info->super_copy->super_roots,
&info->super_for_commit->super_roots,
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}
/*
* this copies info out of the root backup array and back into
* the in-memory super block. It is meant to help iterate through
* the array, so you send it the number of backups you've already
* tried and the last backup index you used.
*
* this returns -1 when it has tried all the backups
*/
static noinline int next_root_backup(struct btrfs_fs_info *info,
struct btrfs_super_block *super,
int *num_backups_tried, int *backup_index)
{
struct btrfs_root_backup *root_backup;
int newest = *backup_index;
if (*num_backups_tried == 0) {
u64 gen = btrfs_super_generation(super);
newest = find_newest_super_backup(info, gen);
if (newest == -1)
return -1;
*backup_index = newest;
*num_backups_tried = 1;
} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
/* we've tried all the backups, all done */
return -1;
} else {
/* jump to the next oldest backup */
newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
BTRFS_NUM_BACKUP_ROOTS;
*backup_index = newest;
*num_backups_tried += 1;
}
root_backup = super->super_roots + newest;
btrfs_set_super_generation(super,
btrfs_backup_tree_root_gen(root_backup));
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
btrfs_set_super_root_level(super,
btrfs_backup_tree_root_level(root_backup));
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
/*
* fixme: the total bytes and num_devices need to match or we should
* need a fsck
*/
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
return 0;
}
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
btrfs_destroy_workqueue(fs_info->fixup_workers);
btrfs_destroy_workqueue(fs_info->delalloc_workers);
btrfs_destroy_workqueue(fs_info->workers);
btrfs_destroy_workqueue(fs_info->endio_workers);
btrfs_destroy_workqueue(fs_info->endio_meta_workers);
btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
btrfs_destroy_workqueue(fs_info->endio_repair_workers);
btrfs_destroy_workqueue(fs_info->rmw_workers);
btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
btrfs_destroy_workqueue(fs_info->endio_write_workers);
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
btrfs_destroy_workqueue(fs_info->submit_workers);
btrfs_destroy_workqueue(fs_info->delayed_workers);
btrfs_destroy_workqueue(fs_info->caching_workers);
btrfs_destroy_workqueue(fs_info->readahead_workers);
btrfs_destroy_workqueue(fs_info->flush_workers);
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
btrfs_destroy_workqueue(fs_info->extent_workers);
}
static void free_root_extent_buffers(struct btrfs_root *root)
{
if (root) {
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
root->node = NULL;
root->commit_root = NULL;
}
}
/* helper to cleanup tree roots */
static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
{
free_root_extent_buffers(info->tree_root);
free_root_extent_buffers(info->dev_root);
free_root_extent_buffers(info->extent_root);
free_root_extent_buffers(info->csum_root);
free_root_extent_buffers(info->quota_root);
free_root_extent_buffers(info->uuid_root);
if (chunk_root)
free_root_extent_buffers(info->chunk_root);
}
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
{
int ret;
struct btrfs_root *gang[8];
int i;
while (!list_empty(&fs_info->dead_roots)) {
gang[0] = list_entry(fs_info->dead_roots.next,
struct btrfs_root, root_list);
list_del(&gang[0]->root_list);
if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
btrfs_drop_and_free_fs_root(fs_info, gang[0]);
} else {
free_extent_buffer(gang[0]->node);
free_extent_buffer(gang[0]->commit_root);
btrfs_put_fs_root(gang[0]);
}
}
while (1) {
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
for (i = 0; i < ret; i++)
btrfs_drop_and_free_fs_root(fs_info, gang[i]);
}
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
btrfs_free_log_root_tree(NULL, fs_info);
btrfs_destroy_pinned_extent(fs_info->tree_root,
fs_info->pinned_extents);
}
}
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
mutex_init(&fs_info->scrub_lock);
atomic_set(&fs_info->scrubs_running, 0);
atomic_set(&fs_info->scrub_pause_req, 0);
atomic_set(&fs_info->scrubs_paused, 0);
atomic_set(&fs_info->scrub_cancel_req, 0);
init_waitqueue_head(&fs_info->scrub_pause_wait);
fs_info->scrub_workers_refcnt = 0;
}
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
spin_lock_init(&fs_info->balance_lock);
mutex_init(&fs_info->balance_mutex);
atomic_set(&fs_info->balance_running, 0);
atomic_set(&fs_info->balance_pause_req, 0);
atomic_set(&fs_info->balance_cancel_req, 0);
fs_info->balance_ctl = NULL;
init_waitqueue_head(&fs_info->balance_wait_q);
}
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
struct btrfs_root *tree_root)
{
fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
set_nlink(fs_info->btree_inode, 1);
/*
* we set the i_size on the btree inode to the max possible int.
* the real end of the address space is determined by all of
* the devices in the system
*/
fs_info->btree_inode->i_size = OFFSET_MAX;
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
fs_info->btree_inode->i_mapping);
BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
BTRFS_I(fs_info->btree_inode)->root = tree_root;
memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
sizeof(struct btrfs_key));
set_bit(BTRFS_INODE_DUMMY,
&BTRFS_I(fs_info->btree_inode)->runtime_flags);
btrfs_insert_inode_hash(fs_info->btree_inode);
}
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
fs_info->dev_replace.lock_owner = 0;
atomic_set(&fs_info->dev_replace.nesting_level, 0);
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
mutex_init(&fs_info->dev_replace.lock_management_lock);
mutex_init(&fs_info->dev_replace.lock);
init_waitqueue_head(&fs_info->replace_wait);
}
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
spin_lock_init(&fs_info->qgroup_lock);
mutex_init(&fs_info->qgroup_ioctl_lock);
fs_info->qgroup_tree = RB_ROOT;
fs_info->qgroup_op_tree = RB_ROOT;
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
fs_info->qgroup_seq = 1;
fs_info->quota_enabled = 0;
fs_info->pending_quota_state = 0;
fs_info->qgroup_ulist = NULL;
mutex_init(&fs_info->qgroup_rescan_lock);
}
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
struct btrfs_fs_devices *fs_devices)
{
int max_active = fs_info->thread_pool_size;
unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
fs_info->workers =
btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
max_active, 16);
fs_info->delalloc_workers =
btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
fs_info->flush_workers =
btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
fs_info->caching_workers =
btrfs_alloc_workqueue("cache", flags, max_active, 0);
/*
* a higher idle thresh on the submit workers makes it much more
* likely that bios will be send down in a sane order to the
* devices
*/
fs_info->submit_workers =
btrfs_alloc_workqueue("submit", flags,
min_t(u64, fs_devices->num_devices,
max_active), 64);
fs_info->fixup_workers =
btrfs_alloc_workqueue("fixup", flags, 1, 0);
/*
* endios are largely parallel and should have a very
* low idle thresh
*/
fs_info->endio_workers =
btrfs_alloc_workqueue("endio", flags, max_active, 4);
fs_info->endio_meta_workers =
btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
fs_info->endio_meta_write_workers =
btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
fs_info->endio_raid56_workers =
btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
fs_info->endio_repair_workers =
btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
fs_info->rmw_workers =
btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fs_info->endio_write_workers =
btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
fs_info->endio_freespace_worker =
btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
fs_info->delayed_workers =
btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
fs_info->readahead_workers =
btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fs_info->qgroup_rescan_workers =
btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
fs_info->extent_workers =
btrfs_alloc_workqueue("extent-refs", flags,
min_t(u64, fs_devices->num_devices,
max_active), 8);
if (!(fs_info->workers && fs_info->delalloc_workers &&
fs_info->submit_workers && fs_info->flush_workers &&
fs_info->endio_workers && fs_info->endio_meta_workers &&
fs_info->endio_meta_write_workers &&
fs_info->endio_repair_workers &&
fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
fs_info->caching_workers && fs_info->readahead_workers &&
fs_info->fixup_workers && fs_info->delayed_workers &&
fs_info->extent_workers &&
fs_info->qgroup_rescan_workers)) {
return -ENOMEM;
}
return 0;
}
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
struct btrfs_fs_devices *fs_devices)
{
int ret;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *log_tree_root;
struct btrfs_super_block *disk_super = fs_info->super_copy;
u64 bytenr = btrfs_super_log_root(disk_super);
if (fs_devices->rw_devices == 0) {
btrfs_warn(fs_info, "log replay required on RO media");
return -EIO;
}
log_tree_root = btrfs_alloc_root(fs_info);
if (!log_tree_root)
return -ENOMEM;
__setup_root(tree_root->nodesize, tree_root->sectorsize,
tree_root->stripesize, log_tree_root, fs_info,
BTRFS_TREE_LOG_OBJECTID);
log_tree_root->node = read_tree_block(tree_root, bytenr,
fs_info->generation + 1);
if (IS_ERR(log_tree_root->node)) {
btrfs_warn(fs_info, "failed to read log tree");
ret = PTR_ERR(log_tree_root->node);
kfree(log_tree_root);
return ret;
} else if (!extent_buffer_uptodate(log_tree_root->node)) {
btrfs_err(fs_info, "failed to read log tree");
free_extent_buffer(log_tree_root->node);
kfree(log_tree_root);
return -EIO;
}
/* returns with log_tree_root freed on success */
ret = btrfs_recover_log_trees(log_tree_root);
if (ret) {
btrfs_std_error(tree_root->fs_info, ret,
"Failed to recover log tree");
free_extent_buffer(log_tree_root->node);
kfree(log_tree_root);
return ret;
}
if (fs_info->sb->s_flags & MS_RDONLY) {
ret = btrfs_commit_super(tree_root);
if (ret)
return ret;
}
return 0;
}
static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
struct btrfs_root *tree_root)
{
struct btrfs_root *root;
struct btrfs_key location;
int ret;
location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root))
return PTR_ERR(root);
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->extent_root = root;
location.objectid = BTRFS_DEV_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root))
return PTR_ERR(root);
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->dev_root = root;
btrfs_init_devices_late(fs_info);
location.objectid = BTRFS_CSUM_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root))
return PTR_ERR(root);
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->csum_root = root;
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (!IS_ERR(root)) {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->quota_enabled = 1;
fs_info->pending_quota_state = 1;
fs_info->quota_root = root;
}
location.objectid = BTRFS_UUID_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
if (ret != -ENOENT)
return ret;
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->uuid_root = root;
}
return 0;
}
int open_ctree(struct super_block *sb,
struct btrfs_fs_devices *fs_devices,
char *options)
{
u32 sectorsize;
u32 nodesize;
u32 stripesize;
u64 generation;
u64 features;
struct btrfs_key location;
struct buffer_head *bh;
struct btrfs_super_block *disk_super;
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
struct btrfs_root *tree_root;
struct btrfs_root *chunk_root;
int ret;
int err = -EINVAL;
int num_backups_tried = 0;
int backup_index = 0;
int max_active;
tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
if (!tree_root || !chunk_root) {
err = -ENOMEM;
goto fail;
}
ret = init_srcu_struct(&fs_info->subvol_srcu);
if (ret) {
err = ret;
goto fail;
}
ret = setup_bdi(fs_info, &fs_info->bdi);
if (ret) {
err = ret;
goto fail_srcu;
}
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
if (ret) {
err = ret;
goto fail_bdi;
}
fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
(1 + ilog2(nr_cpu_ids));
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
if (ret) {
err = ret;
goto fail_dirty_metadata_bytes;
}
ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
if (ret) {
err = ret;
goto fail_delalloc_bytes;
}
fs_info->btree_inode = new_inode(sb);
if (!fs_info->btree_inode) {
err = -ENOMEM;
goto fail_bio_counter;
}
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
INIT_LIST_HEAD(&fs_info->trans_list);
INIT_LIST_HEAD(&fs_info->dead_roots);
INIT_LIST_HEAD(&fs_info->delayed_iputs);
INIT_LIST_HEAD(&fs_info->delalloc_roots);
INIT_LIST_HEAD(&fs_info->caching_block_groups);
spin_lock_init(&fs_info->delalloc_root_lock);
spin_lock_init(&fs_info->trans_lock);
spin_lock_init(&fs_info->fs_roots_radix_lock);
spin_lock_init(&fs_info->delayed_iput_lock);
spin_lock_init(&fs_info->defrag_inodes_lock);
spin_lock_init(&fs_info->free_chunk_lock);
spin_lock_init(&fs_info->tree_mod_seq_lock);
spin_lock_init(&fs_info->super_lock);
spin_lock_init(&fs_info->qgroup_op_lock);
spin_lock_init(&fs_info->buffer_lock);
spin_lock_init(&fs_info->unused_bgs_lock);
rwlock_init(&fs_info->tree_mod_log_lock);
mutex_init(&fs_info->unused_bg_unpin_mutex);
mutex_init(&fs_info->delete_unused_bgs_mutex);
mutex_init(&fs_info->reloc_mutex);
mutex_init(&fs_info->delalloc_root_mutex);
seqlock_init(&fs_info->profiles_lock);
init_rwsem(&fs_info->delayed_iput_sem);
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
INIT_LIST_HEAD(&fs_info->space_info);
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
INIT_LIST_HEAD(&fs_info->unused_bgs);
btrfs_mapping_init(&fs_info->mapping_tree);
btrfs_init_block_rsv(&fs_info->global_block_rsv,
BTRFS_BLOCK_RSV_GLOBAL);
btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
BTRFS_BLOCK_RSV_DELALLOC);
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
BTRFS_BLOCK_RSV_DELOPS);
atomic_set(&fs_info->nr_async_submits, 0);
atomic_set(&fs_info->async_delalloc_pages, 0);
atomic_set(&fs_info->async_submit_draining, 0);
atomic_set(&fs_info->nr_async_bios, 0);
atomic_set(&fs_info->defrag_running, 0);
atomic_set(&fs_info->qgroup_op_seq, 0);
atomic64_set(&fs_info->tree_mod_seq, 0);
fs_info->sb = sb;
fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
fs_info->metadata_ratio = 0;
fs_info->defrag_inodes = RB_ROOT;
fs_info->free_chunk_space = 0;
fs_info->tree_mod_log = RB_ROOT;
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
/* readahead state */
INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
spin_lock_init(&fs_info->reada_lock);
fs_info->thread_pool_size = min_t(unsigned long,
num_online_cpus() + 2, 8);
INIT_LIST_HEAD(&fs_info->ordered_roots);
spin_lock_init(&fs_info->ordered_root_lock);
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
GFP_NOFS);
if (!fs_info->delayed_root) {
err = -ENOMEM;
goto fail_iput;
}
btrfs_init_delayed_root(fs_info->delayed_root);
btrfs_init_scrub(fs_info);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
fs_info->check_integrity_print_mask = 0;
#endif
btrfs_init_balance(fs_info);
btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
sb->s_blocksize = 4096;
sb->s_blocksize_bits = blksize_bits(4096);
sb->s_bdi = &fs_info->bdi;
btrfs_init_btree_inode(fs_info, tree_root);
spin_lock_init(&fs_info->block_group_cache_lock);
fs_info->block_group_cache_tree = RB_ROOT;
fs_info->first_logical_byte = (u64)-1;
extent_io_tree_init(&fs_info->freed_extents[0],
fs_info->btree_inode->i_mapping);
extent_io_tree_init(&fs_info->freed_extents[1],
fs_info->btree_inode->i_mapping);
fs_info->pinned_extents = &fs_info->freed_extents[0];
fs_info->do_barriers = 1;
mutex_init(&fs_info->ordered_operations_mutex);
mutex_init(&fs_info->tree_log_mutex);
mutex_init(&fs_info->chunk_mutex);
mutex_init(&fs_info->transaction_kthread_mutex);
mutex_init(&fs_info->cleaner_mutex);
mutex_init(&fs_info->volume_mutex);
mutex_init(&fs_info->ro_block_group_mutex);
init_rwsem(&fs_info->commit_root_sem);
init_rwsem(&fs_info->cleanup_work_sem);
init_rwsem(&fs_info->subvol_sem);
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
btrfs_init_dev_replace_locks(fs_info);
btrfs_init_qgroup(fs_info);
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
init_waitqueue_head(&fs_info->transaction_throttle);
init_waitqueue_head(&fs_info->transaction_wait);
init_waitqueue_head(&fs_info->transaction_blocked_wait);
init_waitqueue_head(&fs_info->async_submit_wait);
INIT_LIST_HEAD(&fs_info->pinned_chunks);
ret = btrfs_alloc_stripe_hash_table(fs_info);
if (ret) {
err = ret;
goto fail_alloc;
}
__setup_root(4096, 4096, 4096, tree_root,
fs_info, BTRFS_ROOT_TREE_OBJECTID);
invalidate_bdev(fs_devices->latest_bdev);
/*
* Read super block and check the signature bytes only
*/
bh = btrfs_read_dev_super(fs_devices->latest_bdev);
if (IS_ERR(bh)) {
err = PTR_ERR(bh);
goto fail_alloc;
}
/*
* We want to check superblock checksum, the type is stored inside.
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
*/
if (btrfs_check_super_csum(bh->b_data)) {
printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
err = -EINVAL;
goto fail_alloc;
}
/*
* super_copy is zeroed at allocation time and we never touch the
* following bytes up to INFO_SIZE, the checksum is calculated from
* the whole block of INFO_SIZE
*/
memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
memcpy(fs_info->super_for_commit, fs_info->super_copy,
sizeof(*fs_info->super_for_commit));
brelse(bh);
memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
if (ret) {
printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
err = -EINVAL;
goto fail_alloc;
}
disk_super = fs_info->super_copy;
if (!btrfs_super_root(disk_super))
goto fail_alloc;
/* check FS state, whether FS is broken. */
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
/*
* run through our array of backup supers and setup
* our ring pointer to the oldest one
*/
generation = btrfs_super_generation(disk_super);
find_oldest_super_backup(fs_info, generation);
/*
* In the long term, we'll store the compression type in the super
* block, and it'll be used for per file compression control.
*/
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
ret = btrfs_parse_options(tree_root, options);
if (ret) {
err = ret;
goto fail_alloc;
}
features = btrfs_super_incompat_flags(disk_super) &
~BTRFS_FEATURE_INCOMPAT_SUPP;
if (features) {
printk(KERN_ERR "BTRFS: couldn't mount because of "
"unsupported optional features (%Lx).\n",
features);
err = -EINVAL;
goto fail_alloc;
}
/*
* Leafsize and nodesize were always equal, this is only a sanity check.
*/
if (le32_to_cpu(disk_super->__unused_leafsize) !=
btrfs_super_nodesize(disk_super)) {
printk(KERN_ERR "BTRFS: couldn't mount because metadata "
"blocksizes don't match. node %d leaf %d\n",
btrfs_super_nodesize(disk_super),
le32_to_cpu(disk_super->__unused_leafsize));
err = -EINVAL;
goto fail_alloc;
}
if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
printk(KERN_ERR "BTRFS: couldn't mount because metadata "
"blocksize (%d) was too large\n",
btrfs_super_nodesize(disk_super));
err = -EINVAL;
goto fail_alloc;
}
features = btrfs_super_incompat_flags(disk_super);
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
printk(KERN_INFO "BTRFS: has skinny extents\n");
/*
* flag our filesystem as having big metadata blocks if
* they are bigger than the page size
*/
if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
}
nodesize = btrfs_super_nodesize(disk_super);
sectorsize = btrfs_super_sectorsize(disk_super);
stripesize = btrfs_super_stripesize(disk_super);
fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
/*
* mixed block groups end up with duplicate but slightly offset
* extent buffers for the same range. It leads to corruptions
*/
if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
(sectorsize != nodesize)) {
printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
"are not allowed for mixed block groups on %s\n",
sb->s_id);
goto fail_alloc;
}
/*
* Needn't use the lock because there is no other task which will
* update the flag.
*/
btrfs_set_super_incompat_flags(disk_super, features);
features = btrfs_super_compat_ro_flags(disk_super) &
~BTRFS_FEATURE_COMPAT_RO_SUPP;
if (!(sb->s_flags & MS_RDONLY) && features) {
printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
"unsupported option features (%Lx).\n",
features);
err = -EINVAL;
goto fail_alloc;
}
max_active = fs_info->thread_pool_size;
ret = btrfs_init_workqueues(fs_info, fs_devices);
if (ret) {
err = ret;
goto fail_sb_buffer;
}
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
4 * 1024 * 1024 / PAGE_CACHE_SIZE);
tree_root->nodesize = nodesize;
tree_root->sectorsize = sectorsize;
tree_root->stripesize = stripesize;
sb->s_blocksize = sectorsize;
sb->s_blocksize_bits = blksize_bits(sectorsize);
if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
goto fail_sb_buffer;
}
if (sectorsize != PAGE_SIZE) {
printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
"found on %s\n", (unsigned long)sectorsize, sb->s_id);
goto fail_sb_buffer;
}
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_sys_array(tree_root);
mutex_unlock(&fs_info->chunk_mutex);
if (ret) {
printk(KERN_ERR "BTRFS: failed to read the system "
"array on %s\n", sb->s_id);
goto fail_sb_buffer;
}
generation = btrfs_super_chunk_root_generation(disk_super);
__setup_root(nodesize, sectorsize, stripesize, chunk_root,
fs_info, BTRFS_CHUNK_TREE_OBJECTID);
chunk_root->node = read_tree_block(chunk_root,
btrfs_super_chunk_root(disk_super),
generation);
if (IS_ERR(chunk_root->node) ||
!extent_buffer_uptodate(chunk_root->node)) {
printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
sb->s_id);
if (!IS_ERR(chunk_root->node))
free_extent_buffer(chunk_root->node);
chunk_root->node = NULL;
goto fail_tree_roots;
}
btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
chunk_root->commit_root = btrfs_root_node(chunk_root);
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
ret = btrfs_read_chunk_tree(chunk_root);
if (ret) {
printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
sb->s_id);
goto fail_tree_roots;
}
/*
* keep the device that is marked to be the target device for the
* dev_replace procedure
*/
btrfs_close_extra_devices(fs_devices, 0);
if (!fs_devices->latest_bdev) {
printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
sb->s_id);
goto fail_tree_roots;
}
retry_root_backup:
generation = btrfs_super_generation(disk_super);
tree_root->node = read_tree_block(tree_root,
btrfs_super_root(disk_super),
generation);
if (IS_ERR(tree_root->node) ||
!extent_buffer_uptodate(tree_root->node)) {
printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
sb->s_id);
if (!IS_ERR(tree_root->node))
free_extent_buffer(tree_root->node);
tree_root->node = NULL;
goto recovery_tree_root;
}
btrfs_set_root_node(&tree_root->root_item, tree_root->node);
tree_root->commit_root = btrfs_root_node(tree_root);
btrfs_set_root_refs(&tree_root->root_item, 1);
ret = btrfs_read_roots(fs_info, tree_root);
if (ret)
goto recovery_tree_root;
fs_info->generation = generation;
fs_info->last_trans_committed = generation;
ret = btrfs_recover_balance(fs_info);
if (ret) {
printk(KERN_ERR "BTRFS: failed to recover balance\n");
goto fail_block_groups;
}
ret = btrfs_init_dev_stats(fs_info);
if (ret) {
printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
ret);
goto fail_block_groups;
}
ret = btrfs_init_dev_replace(fs_info);
if (ret) {
pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
goto fail_block_groups;
}
btrfs_close_extra_devices(fs_devices, 1);
ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
if (ret) {
pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
goto fail_block_groups;
}
ret = btrfs_sysfs_add_device(fs_devices);
if (ret) {
pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
goto fail_fsdev_sysfs;
}
ret = btrfs_sysfs_add_mounted(fs_info);
if (ret) {
pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
goto fail_fsdev_sysfs;
}
ret = btrfs_init_space_info(fs_info);
if (ret) {
printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
goto fail_sysfs;
}
ret = btrfs_read_block_groups(fs_info->extent_root);
if (ret) {
printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
goto fail_sysfs;
}
fs_info->num_tolerated_disk_barrier_failures =
btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
if (fs_info->fs_devices->missing_devices >
fs_info->num_tolerated_disk_barrier_failures &&
!(sb->s_flags & MS_RDONLY)) {
pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
fs_info->fs_devices->missing_devices,
fs_info->num_tolerated_disk_barrier_failures);
goto fail_sysfs;
}
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
"btrfs-cleaner");
if (IS_ERR(fs_info->cleaner_kthread))
goto fail_sysfs;
fs_info->transaction_kthread = kthread_run(transaction_kthread,
tree_root,
"btrfs-transaction");
if (IS_ERR(fs_info->transaction_kthread))
goto fail_cleaner;
if (!btrfs_test_opt(tree_root, SSD) &&
!btrfs_test_opt(tree_root, NOSSD) &&
!fs_info->fs_devices->rotating) {
printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
"mode\n");
btrfs_set_opt(fs_info->mount_opt, SSD);
}
/*
* Mount does not set all options immediatelly, we can do it now and do
* not have to wait for transaction commit
*/
btrfs_apply_pending_changes(fs_info);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
ret = btrfsic_mount(tree_root, fs_devices,
btrfs_test_opt(tree_root,
CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
1 : 0,
fs_info->check_integrity_print_mask);
if (ret)
printk(KERN_WARNING "BTRFS: failed to initialize"
" integrity check module %s\n", sb->s_id);
}
#endif
ret = btrfs_read_qgroup_config(fs_info);
if (ret)
goto fail_trans_kthread;
/* do not make disk changes in broken FS */
if (btrfs_super_log_root(disk_super) != 0) {
ret = btrfs_replay_log(fs_info, fs_devices);
if (ret) {
err = ret;
goto fail_qgroup;
}
}
ret = btrfs_find_orphan_roots(tree_root);
if (ret)
goto fail_qgroup;
if (!(sb->s_flags & MS_RDONLY)) {
ret = btrfs_cleanup_fs_roots(fs_info);
if (ret)
goto fail_qgroup;
mutex_lock(&fs_info->cleaner_mutex);
ret = btrfs_recover_relocation(tree_root);
mutex_unlock(&fs_info->cleaner_mutex);
if (ret < 0) {
printk(KERN_WARNING
"BTRFS: failed to recover relocation\n");
err = -EINVAL;
goto fail_qgroup;
}
}
location.objectid = BTRFS_FS_TREE_OBJECTID;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
if (IS_ERR(fs_info->fs_root)) {
err = PTR_ERR(fs_info->fs_root);
goto fail_qgroup;
}
if (sb->s_flags & MS_RDONLY)
return 0;
down_read(&fs_info->cleanup_work_sem);
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
up_read(&fs_info->cleanup_work_sem);
close_ctree(tree_root);
return ret;
}
up_read(&fs_info->cleanup_work_sem);
ret = btrfs_resume_balance_async(fs_info);
if (ret) {
printk(KERN_WARNING "BTRFS: failed to resume balance\n");
close_ctree(tree_root);
return ret;
}
ret = btrfs_resume_dev_replace_async(fs_info);
if (ret) {
pr_warn("BTRFS: failed to resume dev_replace\n");
close_ctree(tree_root);
return ret;
}
btrfs_qgroup_rescan_resume(fs_info);
if (!fs_info->uuid_root) {
pr_info("BTRFS: creating UUID tree\n");
ret = btrfs_create_uuid_tree(fs_info);
if (ret) {
pr_warn("BTRFS: failed to create the UUID tree %d\n",
ret);
close_ctree(tree_root);
return ret;
}
} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
fs_info->generation !=
btrfs_super_uuid_tree_generation(disk_super)) {
pr_info("BTRFS: checking UUID tree\n");
ret = btrfs_check_uuid_tree(fs_info);
if (ret) {
pr_warn("BTRFS: failed to check the UUID tree %d\n",
ret);
close_ctree(tree_root);
return ret;
}
} else {
fs_info->update_uuid_tree_gen = 1;
}
fs_info->open = 1;
return 0;
fail_qgroup:
btrfs_free_qgroup_config(fs_info);
fail_trans_kthread:
kthread_stop(fs_info->transaction_kthread);
btrfs_cleanup_transaction(fs_info->tree_root);
btrfs_free_fs_roots(fs_info);
fail_cleaner:
kthread_stop(fs_info->cleaner_kthread);
/*
* make sure we're done with the btree inode before we stop our
* kthreads
*/
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
fail_sysfs:
btrfs_sysfs_remove_mounted(fs_info);
fail_fsdev_sysfs:
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
fail_block_groups:
btrfs_put_block_group_cache(fs_info);
btrfs_free_block_groups(fs_info);
fail_tree_roots:
free_root_pointers(fs_info, 1);
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
fail_sb_buffer:
btrfs_stop_all_workers(fs_info);
fail_alloc:
fail_iput:
btrfs_mapping_tree_free(&fs_info->mapping_tree);
iput(fs_info->btree_inode);
fail_bio_counter:
percpu_counter_destroy(&fs_info->bio_counter);
fail_delalloc_bytes:
percpu_counter_destroy(&fs_info->delalloc_bytes);
fail_dirty_metadata_bytes:
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
fail_bdi:
bdi_destroy(&fs_info->bdi);
fail_srcu:
cleanup_srcu_struct(&fs_info->subvol_srcu);
fail:
btrfs_free_stripe_hash_table(fs_info);
btrfs_close_devices(fs_info->fs_devices);
return err;
recovery_tree_root:
if (!btrfs_test_opt(tree_root, RECOVERY))
goto fail_tree_roots;
free_root_pointers(fs_info, 0);
/* don't use the log in recovery mode, it won't be valid */
btrfs_set_super_log_root(disk_super, 0);
/* we can't trust the free space cache either */
btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
ret = next_root_backup(fs_info, fs_info->super_copy,
&num_backups_tried, &backup_index);
if (ret == -1)
goto fail_block_groups;
goto retry_root_backup;
}
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
{
if (uptodate) {
set_buffer_uptodate(bh);
} else {
struct btrfs_device *device = (struct btrfs_device *)
bh->b_private;
btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
"lost page write due to IO error on %s",
rcu_str_deref(device->name));
/* note, we dont' set_buffer_write_io_error because we have
* our own ways of dealing with the IO errors
*/
clear_buffer_uptodate(bh);
btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
}
unlock_buffer(bh);
put_bh(bh);
}
int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
struct buffer_head **bh_ret)
{
struct buffer_head *bh;
struct btrfs_super_block *super;
u64 bytenr;
bytenr = btrfs_sb_offset(copy_num);
if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
return -EINVAL;
bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
/*
* If we fail to read from the underlying devices, as of now
* the best option we have is to mark it EIO.
*/
if (!bh)
return -EIO;
super = (struct btrfs_super_block *)bh->b_data;
if (btrfs_super_bytenr(super) != bytenr ||
btrfs_super_magic(super) != BTRFS_MAGIC) {
brelse(bh);
return -EINVAL;
}
*bh_ret = bh;
return 0;
}
struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
{
struct buffer_head *bh;
struct buffer_head *latest = NULL;
struct btrfs_super_block *super;
int i;
u64 transid = 0;
int ret = -EINVAL;
/* we would like to check all the supers, but that would make
* a btrfs mount succeed after a mkfs from a different FS.
* So, we need to add a special mount option to scan for
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
*/
for (i = 0; i < 1; i++) {
ret = btrfs_read_dev_one_super(bdev, i, &bh);
if (ret)
continue;
super = (struct btrfs_super_block *)bh->b_data;
if (!latest || btrfs_super_generation(super) > transid) {
brelse(latest);
latest = bh;
transid = btrfs_super_generation(super);
} else {
brelse(bh);
}
}
if (!latest)
return ERR_PTR(ret);
return latest;
}
/*
* this should be called twice, once with wait == 0 and
* once with wait == 1. When wait == 0 is done, all the buffer heads
* we write are pinned.
*
* They are released when wait == 1 is done.
* max_mirrors must be the same for both runs, and it indicates how
* many supers on this one device should be written.
*
* max_mirrors == 0 means to write them all.
*/
static int write_dev_supers(struct btrfs_device *device,
struct btrfs_super_block *sb,
int do_barriers, int wait, int max_mirrors)
{
struct buffer_head *bh;
int i;
int ret;
int errors = 0;
u32 crc;
u64 bytenr;
if (max_mirrors == 0)
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
for (i = 0; i < max_mirrors; i++) {
bytenr = btrfs_sb_offset(i);
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
device->commit_total_bytes)
break;
if (wait) {
bh = __find_get_block(device->bdev, bytenr / 4096,
BTRFS_SUPER_INFO_SIZE);
if (!bh) {
errors++;
continue;
}
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
errors++;
/* drop our reference */
brelse(bh);
/* drop the reference from the wait == 0 run */
brelse(bh);
continue;
} else {
btrfs_set_super_bytenr(sb, bytenr);
crc = ~(u32)0;
crc = btrfs_csum_data((char *)sb +
BTRFS_CSUM_SIZE, crc,
BTRFS_SUPER_INFO_SIZE -
BTRFS_CSUM_SIZE);
btrfs_csum_final(crc, sb->csum);
/*
* one reference for us, and we leave it for the
* caller
*/
bh = __getblk(device->bdev, bytenr / 4096,
BTRFS_SUPER_INFO_SIZE);
if (!bh) {
btrfs_err(device->dev_root->fs_info,
"couldn't get super buffer head for bytenr %llu",
bytenr);
errors++;
continue;
}
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
/* one reference for submit_bh */
get_bh(bh);
set_buffer_uptodate(bh);
lock_buffer(bh);
bh->b_end_io = btrfs_end_buffer_write_sync;
bh->b_private = device;
}
/*
* we fua the first super. The others we allow
* to go down lazy.
*/
if (i == 0)
ret = btrfsic_submit_bh(WRITE_FUA, bh);
else
ret = btrfsic_submit_bh(WRITE_SYNC, bh);
if (ret)
errors++;
}
return errors < i ? 0 : -1;
}
/*
* endio for the write_dev_flush, this will wake anyone waiting
* for the barrier when it is done
*/
static void btrfs_end_empty_barrier(struct bio *bio)
{
if (bio->bi_private)
complete(bio->bi_private);
bio_put(bio);
}
/*
* trigger flushes for one the devices. If you pass wait == 0, the flushes are
* sent down. With wait == 1, it waits for the previous flush.
*
* any device where the flush fails with eopnotsupp are flagged as not-barrier
* capable
*/
static int write_dev_flush(struct btrfs_device *device, int wait)
{
struct bio *bio;
int ret = 0;
if (device->nobarriers)
return 0;
if (wait) {
bio = device->flush_bio;
if (!bio)
return 0;
wait_for_completion(&device->flush_wait);
if (bio->bi_error) {
ret = bio->bi_error;
btrfs_dev_stat_inc_and_print(device,
BTRFS_DEV_STAT_FLUSH_ERRS);
}
/* drop the reference from the wait == 0 run */
bio_put(bio);
device->flush_bio = NULL;
return ret;
}
/*
* one reference for us, and we leave it for the
* caller
*/
device->flush_bio = NULL;
bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
if (!bio)
return -ENOMEM;
bio->bi_end_io = btrfs_end_empty_barrier;
bio->bi_bdev = device->bdev;
init_completion(&device->flush_wait);
bio->bi_private = &device->flush_wait;
device->flush_bio = bio;
bio_get(bio);
btrfsic_submit_bio(WRITE_FLUSH, bio);
return 0;
}
/*
* send an empty flush down to each device in parallel,
* then wait for them
*/
static int barrier_all_devices(struct btrfs_fs_info *info)
{
struct list_head *head;
struct btrfs_device *dev;
int errors_send = 0;
int errors_wait = 0;
int ret;
/* send down all the barriers */
head = &info->fs_devices->devices;
list_for_each_entry_rcu(dev, head, dev_list) {
if (dev->missing)
continue;
if (!dev->bdev) {
errors_send++;
continue;
}
if (!dev->in_fs_metadata || !dev->writeable)
continue;
ret = write_dev_flush(dev, 0);
if (ret)
errors_send++;
}
/* wait for all the barriers */
list_for_each_entry_rcu(dev, head, dev_list) {
if (dev->missing)
continue;
if (!dev->bdev) {
errors_wait++;
continue;
}
if (!dev->in_fs_metadata || !dev->writeable)
continue;
ret = write_dev_flush(dev, 1);
if (ret)
errors_wait++;
}
if (errors_send > info->num_tolerated_disk_barrier_failures ||
errors_wait > info->num_tolerated_disk_barrier_failures)
return -EIO;
return 0;
}
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
int raid_type;
int min_tolerated = INT_MAX;
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
(flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
min_tolerated = min(min_tolerated,
btrfs_raid_array[BTRFS_RAID_SINGLE].
tolerated_failures);
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
if (raid_type == BTRFS_RAID_SINGLE)
continue;
if (!(flags & btrfs_raid_group[raid_type]))
continue;
min_tolerated = min(min_tolerated,
btrfs_raid_array[raid_type].
tolerated_failures);
}
if (min_tolerated == INT_MAX) {
pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
min_tolerated = 0;
}
return min_tolerated;
}
int btrfs_calc_num_tolerated_disk_barrier_failures(
struct btrfs_fs_info *fs_info)
{
struct btrfs_ioctl_space_info space;
struct btrfs_space_info *sinfo;
u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
int i;
int c;
int num_tolerated_disk_barrier_failures =
(int)fs_info->fs_devices->num_devices;
for (i = 0; i < ARRAY_SIZE(types); i++) {
struct btrfs_space_info *tmp;
sinfo = NULL;
rcu_read_lock();
list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
sinfo = tmp;
break;
}
}
rcu_read_unlock();
if (!sinfo)
continue;
down_read(&sinfo->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
u64 flags;
if (list_empty(&sinfo->block_groups[c]))
continue;
btrfs_get_block_group_info(&sinfo->block_groups[c],
&space);
if (space.total_bytes == 0 || space.used_bytes == 0)
continue;
flags = space.flags;
num_tolerated_disk_barrier_failures = min(
num_tolerated_disk_barrier_failures,
btrfs_get_num_tolerated_disk_barrier_failures(
flags));
}
up_read(&sinfo->groups_sem);
}
return num_tolerated_disk_barrier_failures;
}
static int write_all_supers(struct btrfs_root *root, int max_mirrors)
{
struct list_head *head;
struct btrfs_device *dev;
struct btrfs_super_block *sb;
struct btrfs_dev_item *dev_item;
int ret;
int do_barriers;
int max_errors;
int total_errors = 0;
u64 flags;
do_barriers = !btrfs_test_opt(root, NOBARRIER);
backup_super_roots(root->fs_info);
sb = root->fs_info->super_for_commit;
dev_item = &sb->dev_item;
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
head = &root->fs_info->fs_devices->devices;
max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
if (do_barriers) {
ret = barrier_all_devices(root->fs_info);
if (ret) {
mutex_unlock(
&root->fs_info->fs_devices->device_list_mutex);
btrfs_std_error(root->fs_info, ret,
"errors while submitting device barriers.");
return ret;
}
}
list_for_each_entry_rcu(dev, head, dev_list) {
if (!dev->bdev) {
total_errors++;
continue;
}
if (!dev->in_fs_metadata || !dev->writeable)
continue;
btrfs_set_stack_device_generation(dev_item, 0);
btrfs_set_stack_device_type(dev_item, dev->type);
btrfs_set_stack_device_id(dev_item, dev->devid);
btrfs_set_stack_device_total_bytes(dev_item,
dev->commit_total_bytes);
btrfs_set_stack_device_bytes_used(dev_item,
dev->commit_bytes_used);
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
flags = btrfs_super_flags(sb);
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
if (ret)
total_errors++;
}
if (total_errors > max_errors) {
btrfs_err(root->fs_info, "%d errors while writing supers",
total_errors);
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
/* FUA is masked off if unsupported and can't be the reason */
btrfs_std_error(root->fs_info, -EIO,
"%d errors while writing supers", total_errors);
return -EIO;
}
total_errors = 0;
list_for_each_entry_rcu(dev, head, dev_list) {
if (!dev->bdev)
continue;
if (!dev->in_fs_metadata || !dev->writeable)
continue;
ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
if (ret)
total_errors++;
}
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
if (total_errors > max_errors) {
btrfs_std_error(root->fs_info, -EIO,
"%d errors while writing supers", total_errors);
return -EIO;
}
return 0;
}
int write_ctree_super(struct btrfs_trans_handle *trans,
struct btrfs_root *root, int max_mirrors)
{
return write_all_supers(root, max_mirrors);
}
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
spin_lock(&fs_info->fs_roots_radix_lock);
radix_tree_delete(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid);
spin_unlock(&fs_info->fs_roots_radix_lock);
if (btrfs_root_refs(&root->root_item) == 0)
synchronize_srcu(&fs_info->subvol_srcu);
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
btrfs_free_log(NULL, root);
if (root->free_ino_pinned)
__btrfs_remove_free_space_cache(root->free_ino_pinned);
if (root->free_ino_ctl)
__btrfs_remove_free_space_cache(root->free_ino_ctl);
free_fs_root(root);
}
static void free_fs_root(struct btrfs_root *root)
{
iput(root->ino_cache_inode);
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
btrfs_free_block_rsv(root, root->orphan_block_rsv);
root->orphan_block_rsv = NULL;
if (root->anon_dev)
free_anon_bdev(root->anon_dev);
if (root->subv_writers)
btrfs_free_subvolume_writers(root->subv_writers);
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
kfree(root->free_ino_ctl);
kfree(root->free_ino_pinned);
kfree(root->name);
btrfs_put_fs_root(root);
}
void btrfs_free_fs_root(struct btrfs_root *root)
{
free_fs_root(root);
}
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
{
u64 root_objectid = 0;
struct btrfs_root *gang[8];
int i = 0;
int err = 0;
unsigned int ret = 0;
int index;
while (1) {
index = srcu_read_lock(&fs_info->subvol_srcu);
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, root_objectid,
ARRAY_SIZE(gang));
if (!ret) {
srcu_read_unlock(&fs_info->subvol_srcu, index);
break;
}
root_objectid = gang[ret - 1]->root_key.objectid + 1;
for (i = 0; i < ret; i++) {
/* Avoid to grab roots in dead_roots */
if (btrfs_root_refs(&gang[i]->root_item) == 0) {
gang[i] = NULL;
continue;
}
/* grab all the search result for later use */
gang[i] = btrfs_grab_fs_root(gang[i]);
}
srcu_read_unlock(&fs_info->subvol_srcu, index);
for (i = 0; i < ret; i++) {
if (!gang[i])
continue;
root_objectid = gang[i]->root_key.objectid;
err = btrfs_orphan_cleanup(gang[i]);
if (err)
break;
btrfs_put_fs_root(gang[i]);
}
root_objectid++;
}
/* release the uncleaned roots due to error */
for (; i < ret; i++) {
if (gang[i])
btrfs_put_fs_root(gang[i]);
}
return err;
}
int btrfs_commit_super(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
wake_up_process(root->fs_info->cleaner_kthread);
/* wait until ongoing cleanup work done */
down_write(&root->fs_info->cleanup_work_sem);
up_write(&root->fs_info->cleanup_work_sem);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
return btrfs_commit_transaction(trans, root);
}
void close_ctree(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
fs_info->closing = 1;
smp_mb();
/* wait for the uuid_scan task to finish */
down(&fs_info->uuid_tree_rescan_sem);
/* avoid complains from lockdep et al., set sem back to initial state */
up(&fs_info->uuid_tree_rescan_sem);
/* pause restriper - we want to resume on mount */
btrfs_pause_balance(fs_info);
btrfs_dev_replace_suspend_for_unmount(fs_info);
btrfs_scrub_cancel(fs_info);
/* wait for any defraggers to finish */
wait_event(fs_info->transaction_wait,
(atomic_read(&fs_info->defrag_running) == 0));
/* clear out the rbtree of defraggable inodes */
btrfs_cleanup_defrag_inodes(fs_info);
cancel_work_sync(&fs_info->async_reclaim_work);
if (!(fs_info->sb->s_flags & MS_RDONLY)) {
/*
* If the cleaner thread is stopped and there are
* block groups queued for removal, the deletion will be
* skipped when we quit the cleaner thread.
*/
btrfs_delete_unused_bgs(root->fs_info);
ret = btrfs_commit_super(root);
if (ret)
btrfs_err(fs_info, "commit super ret %d", ret);
}
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
btrfs_error_commit_super(root);
kthread_stop(fs_info->transaction_kthread);
kthread_stop(fs_info->cleaner_kthread);
fs_info->closing = 2;
smp_mb();
btrfs_free_qgroup_config(fs_info);
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
btrfs_info(fs_info, "at unmount delalloc count %lld",
percpu_counter_sum(&fs_info->delalloc_bytes));
}
btrfs_sysfs_remove_mounted(fs_info);
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
btrfs_free_fs_roots(fs_info);
btrfs_put_block_group_cache(fs_info);
btrfs_free_block_groups(fs_info);
/*
* we must make sure there is not any read request to
* submit after we stopping all workers.
*/
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
btrfs_stop_all_workers(fs_info);
fs_info->open = 0;
free_root_pointers(fs_info, 1);
iput(fs_info->btree_inode);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_test_opt(root, CHECK_INTEGRITY))
btrfsic_unmount(root, fs_info->fs_devices);
#endif
btrfs_close_devices(fs_info->fs_devices);
btrfs_mapping_tree_free(&fs_info->mapping_tree);
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
percpu_counter_destroy(&fs_info->delalloc_bytes);
percpu_counter_destroy(&fs_info->bio_counter);
bdi_destroy(&fs_info->bdi);
cleanup_srcu_struct(&fs_info->subvol_srcu);
btrfs_free_stripe_hash_table(fs_info);
__btrfs_free_block_rsv(root->orphan_block_rsv);
root->orphan_block_rsv = NULL;
lock_chunks(root);
while (!list_empty(&fs_info->pinned_chunks)) {
struct extent_map *em;
em = list_first_entry(&fs_info->pinned_chunks,
struct extent_map, list);
list_del_init(&em->list);
free_extent_map(em);
}
unlock_chunks(root);
}
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
int atomic)
{
int ret;
struct inode *btree_inode = buf->pages[0]->mapping->host;
ret = extent_buffer_uptodate(buf);
if (!ret)
return ret;
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
parent_transid, atomic);
if (ret == -EAGAIN)
return ret;
return !ret;
}
int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
{
return set_extent_buffer_uptodate(buf);
}
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
struct btrfs_root *root;
u64 transid = btrfs_header_generation(buf);
int was_dirty;
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/*
* This is a fast path so only do this check if we have sanity tests
* enabled. Normal people shouldn't be marking dummy buffers as dirty
* outside of the sanity tests.
*/
if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
return;
#endif
root = BTRFS_I(buf->pages[0]->mapping->host)->root;
btrfs_assert_tree_locked(buf);
if (transid != root->fs_info->generation)
WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
"found %llu running %llu\n",
buf->start, transid, root->fs_info->generation);
was_dirty = set_extent_buffer_dirty(buf);
if (!was_dirty)
__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
buf->len,
root->fs_info->dirty_metadata_batch);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
btrfs_print_leaf(root, buf);
ASSERT(0);
}
#endif
}
static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
int flush_delayed)
{
/*
* looks as though older kernels can get into trouble with
* this code, they end up stuck in balance_dirty_pages forever
*/
int ret;
if (current->flags & PF_MEMALLOC)
return;
if (flush_delayed)
btrfs_balance_delayed_items(root);
ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH);
if (ret > 0) {
balance_dirty_pages_ratelimited(
root->fs_info->btree_inode->i_mapping);
}
return;
}
void btrfs_btree_balance_dirty(struct btrfs_root *root)
{
__btrfs_btree_balance_dirty(root, 1);
}
void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
{
__btrfs_btree_balance_dirty(root, 0);
}
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
{
struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
}
static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
int read_only)
{
struct btrfs_super_block *sb = fs_info->super_copy;
int ret = 0;
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
/*
* The common minimum, we don't know if we can trust the nodesize/sectorsize
* items yet, they'll be verified later. Issue just a warning.
*/
if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
btrfs_super_root(sb));
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
btrfs_super_chunk_root(sb));
if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
btrfs_super_log_root(sb));
/*
* Check the lower bound, the alignment and other constraints are
* checked later.
*/
if (btrfs_super_nodesize(sb) < 4096) {
printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
btrfs_super_nodesize(sb));
ret = -EINVAL;
}
if (btrfs_super_sectorsize(sb) < 4096) {
printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
btrfs_super_sectorsize(sb));
ret = -EINVAL;
}
if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
fs_info->fsid, sb->dev_item.fsid);
ret = -EINVAL;
}
/*
* Hint to catch really bogus numbers, bitflips or so, more exact checks are
* done later
*/
if (btrfs_super_num_devices(sb) > (1UL << 31))
printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
btrfs_super_num_devices(sb));
if (btrfs_super_num_devices(sb) == 0) {
printk(KERN_ERR "BTRFS: number of devices is 0\n");
ret = -EINVAL;
}
if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
ret = -EINVAL;
}
/*
* Obvious sys_chunk_array corruptions, it must hold at least one key
* and one chunk
*/
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
btrfs_super_sys_array_size(sb),
BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ret = -EINVAL;
}
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
+ sizeof(struct btrfs_chunk)) {
printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
btrfs_super_sys_array_size(sb),
sizeof(struct btrfs_disk_key)
+ sizeof(struct btrfs_chunk));
ret = -EINVAL;
}
/*
* The generation is a global counter, we'll trust it more than the others
* but it's still possible that it's the one that's wrong.
*/
if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
printk(KERN_WARNING
"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
&& btrfs_super_cache_generation(sb) != (u64)-1)
printk(KERN_WARNING
"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
return ret;
}
static void btrfs_error_commit_super(struct btrfs_root *root)
{
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
down_write(&root->fs_info->cleanup_work_sem);
up_write(&root->fs_info->cleanup_work_sem);
/* cleanup FS via transaction */
btrfs_cleanup_transaction(root);
}
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
{
struct btrfs_ordered_extent *ordered;
spin_lock(&root->ordered_extent_lock);
/*
* This will just short circuit the ordered completion stuff which will
* make sure the ordered extent gets properly cleaned up.
*/
list_for_each_entry(ordered, &root->ordered_extents,
root_extent_list)
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
spin_unlock(&root->ordered_extent_lock);
}
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&fs_info->ordered_root_lock);
list_splice_init(&fs_info->ordered_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
ordered_root);
list_move_tail(&root->ordered_root,
&fs_info->ordered_roots);
spin_unlock(&fs_info->ordered_root_lock);
btrfs_destroy_ordered_extents(root);
cond_resched();
spin_lock(&fs_info->ordered_root_lock);
}
spin_unlock(&fs_info->ordered_root_lock);
}
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
struct btrfs_root *root)
{
struct rb_node *node;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
int ret = 0;
delayed_refs = &trans->delayed_refs;
spin_lock(&delayed_refs->lock);
if (atomic_read(&delayed_refs->num_entries) == 0) {
spin_unlock(&delayed_refs->lock);
btrfs_info(root->fs_info, "delayed_refs has NO entry");
return ret;
}
while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
struct btrfs_delayed_ref_head *head;
struct btrfs_delayed_ref_node *tmp;
bool pin_bytes = false;
head = rb_entry(node, struct btrfs_delayed_ref_head,
href_node);
if (!mutex_trylock(&head->mutex)) {
atomic_inc(&head->node.refs);
spin_unlock(&delayed_refs->lock);
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
spin_lock(&delayed_refs->lock);
continue;
}
spin_lock(&head->lock);
list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
list) {
ref->in_tree = 0;
list_del(&ref->list);
atomic_dec(&delayed_refs->num_entries);
btrfs_put_delayed_ref(ref);
}
if (head->must_insert_reserved)
pin_bytes = true;
btrfs_free_delayed_extent_op(head->extent_op);
delayed_refs->num_heads--;
if (head->processing == 0)
delayed_refs->num_heads_ready--;
atomic_dec(&delayed_refs->num_entries);
head->node.in_tree = 0;
rb_erase(&head->href_node, &delayed_refs->href_root);
spin_unlock(&head->lock);
spin_unlock(&delayed_refs->lock);
mutex_unlock(&head->mutex);
if (pin_bytes)
btrfs_pin_extent(root, head->node.bytenr,
head->node.num_bytes, 1);
btrfs_put_delayed_ref(&head->node);
cond_resched();
spin_lock(&delayed_refs->lock);
}
spin_unlock(&delayed_refs->lock);
return ret;
}
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
{
struct btrfs_inode *btrfs_inode;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&root->delalloc_lock);
list_splice_init(&root->delalloc_inodes, &splice);
while (!list_empty(&splice)) {
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
delalloc_inodes);
list_del_init(&btrfs_inode->delalloc_inodes);
clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
&btrfs_inode->runtime_flags);
spin_unlock(&root->delalloc_lock);
btrfs_invalidate_inodes(btrfs_inode->root);
spin_lock(&root->delalloc_lock);
}
spin_unlock(&root->delalloc_lock);
}
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&fs_info->delalloc_root_lock);
list_splice_init(&fs_info->delalloc_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
delalloc_root);
list_del_init(&root->delalloc_root);
root = btrfs_grab_fs_root(root);
BUG_ON(!root);
spin_unlock(&fs_info->delalloc_root_lock);
btrfs_destroy_delalloc_inodes(root);
btrfs_put_fs_root(root);
spin_lock(&fs_info->delalloc_root_lock);
}
spin_unlock(&fs_info->delalloc_root_lock);
}
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
struct extent_io_tree *dirty_pages,
int mark)
{
int ret;
struct extent_buffer *eb;
u64 start = 0;
u64 end;
while (1) {
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
mark, NULL);
if (ret)
break;
clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
while (start <= end) {
eb = btrfs_find_tree_block(root->fs_info, start);
start += root->nodesize;
if (!eb)
continue;
wait_on_extent_buffer_writeback(eb);
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
&eb->bflags))
clear_extent_buffer_dirty(eb);
free_extent_buffer_stale(eb);
}
}
return ret;
}
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
struct extent_io_tree *pinned_extents)
{
struct extent_io_tree *unpin;
u64 start;
u64 end;
int ret;
bool loop = true;
unpin = pinned_extents;
again:
while (1) {
ret = find_first_extent_bit(unpin, 0, &start, &end,
EXTENT_DIRTY, NULL);
if (ret)
break;
clear_extent_dirty(unpin, start, end, GFP_NOFS);
btrfs_error_unpin_extent_range(root, start, end);
cond_resched();
}
if (loop) {
if (unpin == &root->fs_info->freed_extents[0])
unpin = &root->fs_info->freed_extents[1];
else
unpin = &root->fs_info->freed_extents[0];
loop = false;
goto again;
}
return 0;
}
static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_ordered_extent *ordered;
spin_lock(&fs_info->trans_lock);
while (!list_empty(&cur_trans->pending_ordered)) {
ordered = list_first_entry(&cur_trans->pending_ordered,
struct btrfs_ordered_extent,
trans_list);
list_del_init(&ordered->trans_list);
spin_unlock(&fs_info->trans_lock);
btrfs_put_ordered_extent(ordered);
spin_lock(&fs_info->trans_lock);
}
spin_unlock(&fs_info->trans_lock);
}
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
struct btrfs_root *root)
{
btrfs_destroy_delayed_refs(cur_trans, root);
cur_trans->state = TRANS_STATE_COMMIT_START;
wake_up(&root->fs_info->transaction_blocked_wait);
cur_trans->state = TRANS_STATE_UNBLOCKED;
wake_up(&root->fs_info->transaction_wait);
btrfs_free_pending_ordered(cur_trans, root->fs_info);
btrfs_destroy_delayed_inodes(root);
btrfs_assert_delayed_root_empty(root);
btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
EXTENT_DIRTY);
btrfs_destroy_pinned_extent(root,
root->fs_info->pinned_extents);
cur_trans->state =TRANS_STATE_COMPLETED;
wake_up(&cur_trans->commit_wait);
/*
memset(cur_trans, 0, sizeof(*cur_trans));
kmem_cache_free(btrfs_transaction_cachep, cur_trans);
*/
}
static int btrfs_cleanup_transaction(struct btrfs_root *root)
{
struct btrfs_transaction *t;
mutex_lock(&root->fs_info->transaction_kthread_mutex);
spin_lock(&root->fs_info->trans_lock);
while (!list_empty(&root->fs_info->trans_list)) {
t = list_first_entry(&root->fs_info->trans_list,
struct btrfs_transaction, list);
if (t->state >= TRANS_STATE_COMMIT_START) {
atomic_inc(&t->use_count);
spin_unlock(&root->fs_info->trans_lock);
btrfs_wait_for_commit(root, t->transid);
btrfs_put_transaction(t);
spin_lock(&root->fs_info->trans_lock);
continue;
}
if (t == root->fs_info->running_transaction) {
t->state = TRANS_STATE_COMMIT_DOING;
spin_unlock(&root->fs_info->trans_lock);
/*
* We wait for 0 num_writers since we don't hold a trans
* handle open currently for this transaction.
*/
wait_event(t->writer_wait,
atomic_read(&t->num_writers) == 0);
} else {
spin_unlock(&root->fs_info->trans_lock);
}
btrfs_cleanup_one_transaction(t, root);
spin_lock(&root->fs_info->trans_lock);
if (t == root->fs_info->running_transaction)
root->fs_info->running_transaction = NULL;
list_del_init(&t->list);
spin_unlock(&root->fs_info->trans_lock);
btrfs_put_transaction(t);
trace_btrfs_transaction_commit(root);
spin_lock(&root->fs_info->trans_lock);
}
spin_unlock(&root->fs_info->trans_lock);
btrfs_destroy_all_ordered_extents(root->fs_info);
btrfs_destroy_delayed_inodes(root);
btrfs_assert_delayed_root_empty(root);
btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
btrfs_destroy_all_delalloc_inodes(root->fs_info);
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
return 0;
}
static const struct extent_io_ops btree_extent_io_ops = {
.readpage_end_io_hook = btree_readpage_end_io_hook,
.readpage_io_failed_hook = btree_io_failed_hook,
.submit_bio_hook = btree_submit_bio_hook,
/* note we're sharing with inode.c for the merge bio hook */
.merge_bio_hook = btrfs_merge_bio_hook,
};
|