summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/ctree.c
blob: 4736155af41978d5214b4587157547a6f7adfd8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/module.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"

static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *ins_key,
		      struct btrfs_path *path, int data_size);
static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
			  *root, struct buffer_head *dst, struct buffer_head
			  *src);
static int balance_node_right(struct btrfs_trans_handle *trans, struct
			      btrfs_root *root, struct buffer_head *dst_buf,
			      struct buffer_head *src_buf);
static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		   struct btrfs_path *path, int level, int slot);

inline void btrfs_init_path(struct btrfs_path *p)
{
	memset(p, 0, sizeof(*p));
}

struct btrfs_path *btrfs_alloc_path(void)
{
	struct btrfs_path *path;
	path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
	if (path)
		btrfs_init_path(path);
	return path;
}

void btrfs_free_path(struct btrfs_path *p)
{
	btrfs_release_path(NULL, p);
	kmem_cache_free(btrfs_path_cachep, p);
}

void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
		if (!p->nodes[i])
			break;
		btrfs_block_release(root, p->nodes[i]);
	}
	memset(p, 0, sizeof(*p));
}

static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
			   *root, struct buffer_head *buf, struct buffer_head
			   *parent, int parent_slot, struct buffer_head
			   **cow_ret)
{
	struct buffer_head *cow;
	struct btrfs_node *cow_node;

	if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
				    trans->transid) {
		*cow_ret = buf;
		return 0;
	}
	cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
	cow_node = btrfs_buffer_node(cow);
	if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
		WARN_ON(1);
	memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
	btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
	btrfs_set_header_generation(&cow_node->header, trans->transid);
	btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
	btrfs_inc_ref(trans, root, buf);
	if (buf == root->node) {
		root->node = cow;
		get_bh(cow);
		if (buf != root->commit_root) {
			btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
		}
		btrfs_block_release(root, buf);
	} else {
		btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
					bh_blocknr(cow));
		btrfs_mark_buffer_dirty(parent);
		btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
	}
	btrfs_block_release(root, buf);
	mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
static inline unsigned int leaf_data_end(struct btrfs_root *root,
					 struct btrfs_leaf *leaf)
{
	u32 nr = btrfs_header_nritems(&leaf->header);
	if (nr == 0)
		return BTRFS_LEAF_DATA_SIZE(root);
	return btrfs_item_offset(leaf->items + nr - 1);
}

/*
 * compare two keys in a memcmp fashion
 */
static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

	if (k1.objectid > k2->objectid)
		return 1;
	if (k1.objectid < k2->objectid)
		return -1;
	if (k1.flags > k2->flags)
		return 1;
	if (k1.flags < k2->flags)
		return -1;
	if (k1.offset > k2->offset)
		return 1;
	if (k1.offset < k2->offset)
		return -1;
	return 0;
}

static int check_node(struct btrfs_root *root, struct btrfs_path *path,
		      int level)
{
	struct btrfs_node *parent = NULL;
	struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
	int parent_slot;
	int slot;
	struct btrfs_key cpukey;
	u32 nritems = btrfs_header_nritems(&node->header);

	if (path->nodes[level + 1])
		parent = btrfs_buffer_node(path->nodes[level + 1]);
	parent_slot = path->slots[level + 1];
	slot = path->slots[level];
	BUG_ON(nritems == 0);
	if (parent) {
		struct btrfs_disk_key *parent_key;
		parent_key = &parent->ptrs[parent_slot].key;
		BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
			      sizeof(struct btrfs_disk_key)));
		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
		       btrfs_header_blocknr(&node->header));
	}
	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
	if (slot != 0) {
		btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
		BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
	}
	if (slot < nritems - 1) {
		btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
		BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
	}
	return 0;
}

static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
		      int level)
{
	struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
	struct btrfs_node *parent = NULL;
	int parent_slot;
	int slot = path->slots[0];
	struct btrfs_key cpukey;

	u32 nritems = btrfs_header_nritems(&leaf->header);

	if (path->nodes[level + 1])
		parent = btrfs_buffer_node(path->nodes[level + 1]);
	parent_slot = path->slots[level + 1];
	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);

	if (nritems == 0)
		return 0;

	if (parent) {
		struct btrfs_disk_key *parent_key;
		parent_key = &parent->ptrs[parent_slot].key;
		BUG_ON(memcmp(parent_key, &leaf->items[0].key,
		       sizeof(struct btrfs_disk_key)));
		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
		       btrfs_header_blocknr(&leaf->header));
	}
	if (slot != 0) {
		btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
		BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
		BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
			btrfs_item_end(leaf->items + slot));
	}
	if (slot < nritems - 1) {
		btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
		BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
		BUG_ON(btrfs_item_offset(leaf->items + slot) !=
			btrfs_item_end(leaf->items + slot + 1));
	}
	BUG_ON(btrfs_item_offset(leaf->items) +
	       btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
	return 0;
}

static int check_block(struct btrfs_root *root, struct btrfs_path *path,
			int level)
{
	struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
	if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
		   sizeof(node->header.fsid)))
		BUG();
	if (level == 0)
		return check_leaf(root, path, level);
	return check_node(root, path, level);
}

/*
 * search for key in the array p.  items p are item_size apart
 * and there are 'max' items in p
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
		       int max, int *slot)
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
	struct btrfs_disk_key *tmp;

	while(low < high) {
		mid = (low + high) / 2;
		tmp = (struct btrfs_disk_key *)(p + mid * item_size);
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
{
	if (btrfs_is_leaf(c)) {
		struct btrfs_leaf *l = (struct btrfs_leaf *)c;
		return generic_bin_search((void *)l->items,
					  sizeof(struct btrfs_item),
					  key, btrfs_header_nritems(&c->header),
					  slot);
	} else {
		return generic_bin_search((void *)c->ptrs,
					  sizeof(struct btrfs_key_ptr),
					  key, btrfs_header_nritems(&c->header),
					  slot);
	}
	return -1;
}

static struct buffer_head *read_node_slot(struct btrfs_root *root,
				   struct buffer_head *parent_buf,
				   int slot)
{
	struct btrfs_node *node = btrfs_buffer_node(parent_buf);
	if (slot < 0)
		return NULL;
	if (slot >= btrfs_header_nritems(&node->header))
		return NULL;
	return read_tree_block(root, btrfs_node_blockptr(node, slot));
}

static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
			 *root, struct btrfs_path *path, int level)
{
	struct buffer_head *right_buf;
	struct buffer_head *mid_buf;
	struct buffer_head *left_buf;
	struct buffer_head *parent_buf = NULL;
	struct btrfs_node *right = NULL;
	struct btrfs_node *mid;
	struct btrfs_node *left = NULL;
	struct btrfs_node *parent = NULL;
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
	u64 orig_ptr;

	if (level == 0)
		return 0;

	mid_buf = path->nodes[level];
	mid = btrfs_buffer_node(mid_buf);
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);

	if (level < BTRFS_MAX_LEVEL - 1)
		parent_buf = path->nodes[level + 1];
	pslot = path->slots[level + 1];

	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
	if (!parent_buf) {
		struct buffer_head *child;
		u64 blocknr = bh_blocknr(mid_buf);

		if (btrfs_header_nritems(&mid->header) != 1)
			return 0;

		/* promote the child to a root */
		child = read_node_slot(root, mid_buf, 0);
		BUG_ON(!child);
		root->node = child;
		path->nodes[level] = NULL;
		clean_tree_block(trans, root, mid_buf);
		wait_on_buffer(mid_buf);
		/* once for the path */
		btrfs_block_release(root, mid_buf);
		/* once for the root ptr */
		btrfs_block_release(root, mid_buf);
		return btrfs_free_extent(trans, root, blocknr, 1, 1);
	}
	parent = btrfs_buffer_node(parent_buf);

	if (btrfs_header_nritems(&mid->header) >
	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
		return 0;

	left_buf = read_node_slot(root, parent_buf, pslot - 1);
	right_buf = read_node_slot(root, parent_buf, pslot + 1);

	/* first, try to make some room in the middle buffer */
	if (left_buf) {
		btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
				&left_buf);
		left = btrfs_buffer_node(left_buf);
		orig_slot += btrfs_header_nritems(&left->header);
		wret = push_node_left(trans, root, left_buf, mid_buf);
		if (wret < 0)
			ret = wret;
	}

	/*
	 * then try to empty the right most buffer into the middle
	 */
	if (right_buf) {
		btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
				&right_buf);
		right = btrfs_buffer_node(right_buf);
		wret = push_node_left(trans, root, mid_buf, right_buf);
		if (wret < 0)
			ret = wret;
		if (btrfs_header_nritems(&right->header) == 0) {
			u64 blocknr = bh_blocknr(right_buf);
			clean_tree_block(trans, root, right_buf);
			wait_on_buffer(right_buf);
			btrfs_block_release(root, right_buf);
			right_buf = NULL;
			right = NULL;
			wret = del_ptr(trans, root, path, level + 1, pslot +
				       1);
			if (wret)
				ret = wret;
			wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
			if (wret)
				ret = wret;
		} else {
			btrfs_memcpy(root, parent,
				     &parent->ptrs[pslot + 1].key,
				     &right->ptrs[0].key,
				     sizeof(struct btrfs_disk_key));
			btrfs_mark_buffer_dirty(parent_buf);
		}
	}
	if (btrfs_header_nritems(&mid->header) == 1) {
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
		BUG_ON(!left_buf);
		wret = balance_node_right(trans, root, mid_buf, left_buf);
		if (wret < 0)
			ret = wret;
		BUG_ON(wret == 1);
	}
	if (btrfs_header_nritems(&mid->header) == 0) {
		/* we've managed to empty the middle node, drop it */
		u64 blocknr = bh_blocknr(mid_buf);
		clean_tree_block(trans, root, mid_buf);
		wait_on_buffer(mid_buf);
		btrfs_block_release(root, mid_buf);
		mid_buf = NULL;
		mid = NULL;
		wret = del_ptr(trans, root, path, level + 1, pslot);
		if (wret)
			ret = wret;
		wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
		if (wret)
			ret = wret;
	} else {
		/* update the parent key to reflect our changes */
		btrfs_memcpy(root, parent,
			     &parent->ptrs[pslot].key, &mid->ptrs[0].key,
			     sizeof(struct btrfs_disk_key));
		btrfs_mark_buffer_dirty(parent_buf);
	}

	/* update the path */
	if (left_buf) {
		if (btrfs_header_nritems(&left->header) > orig_slot) {
			get_bh(left_buf);
			path->nodes[level] = left_buf;
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
			if (mid_buf)
				btrfs_block_release(root, mid_buf);
		} else {
			orig_slot -= btrfs_header_nritems(&left->header);
			path->slots[level] = orig_slot;
		}
	}
	/* double check we haven't messed things up */
	check_block(root, path, level);
	if (orig_ptr !=
	    btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
				path->slots[level]))
		BUG();

	if (right_buf)
		btrfs_block_release(root, right_buf);
	if (left_buf)
		btrfs_block_release(root, left_buf);
	return ret;
}

/* returns zero if the push worked, non-zero otherwise */
static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
				struct btrfs_path *path, int level)
{
	struct buffer_head *right_buf;
	struct buffer_head *mid_buf;
	struct buffer_head *left_buf;
	struct buffer_head *parent_buf = NULL;
	struct btrfs_node *right = NULL;
	struct btrfs_node *mid;
	struct btrfs_node *left = NULL;
	struct btrfs_node *parent = NULL;
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
	u64 orig_ptr;

	if (level == 0)
		return 1;

	mid_buf = path->nodes[level];
	mid = btrfs_buffer_node(mid_buf);
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);

	if (level < BTRFS_MAX_LEVEL - 1)
		parent_buf = path->nodes[level + 1];
	pslot = path->slots[level + 1];

	if (!parent_buf)
		return 1;
	parent = btrfs_buffer_node(parent_buf);

	left_buf = read_node_slot(root, parent_buf, pslot - 1);

	/* first, try to make some room in the middle buffer */
	if (left_buf) {
		u32 left_nr;
		left = btrfs_buffer_node(left_buf);
		left_nr = btrfs_header_nritems(&left->header);
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
			btrfs_cow_block(trans, root, left_buf, parent_buf,
					pslot - 1, &left_buf);
			left = btrfs_buffer_node(left_buf);
			wret = push_node_left(trans, root, left_buf, mid_buf);
		}
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
			orig_slot += left_nr;
			btrfs_memcpy(root, parent,
				     &parent->ptrs[pslot].key,
				     &mid->ptrs[0].key,
				     sizeof(struct btrfs_disk_key));
			btrfs_mark_buffer_dirty(parent_buf);
			if (btrfs_header_nritems(&left->header) > orig_slot) {
				path->nodes[level] = left_buf;
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
				btrfs_block_release(root, mid_buf);
			} else {
				orig_slot -=
					btrfs_header_nritems(&left->header);
				path->slots[level] = orig_slot;
				btrfs_block_release(root, left_buf);
			}
			check_node(root, path, level);
			return 0;
		}
		btrfs_block_release(root, left_buf);
	}
	right_buf = read_node_slot(root, parent_buf, pslot + 1);

	/*
	 * then try to empty the right most buffer into the middle
	 */
	if (right_buf) {
		u32 right_nr;
		right = btrfs_buffer_node(right_buf);
		right_nr = btrfs_header_nritems(&right->header);
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
			btrfs_cow_block(trans, root, right_buf,
					parent_buf, pslot + 1, &right_buf);
			right = btrfs_buffer_node(right_buf);
			wret = balance_node_right(trans, root,
						  right_buf, mid_buf);
		}
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
			btrfs_memcpy(root, parent,
				     &parent->ptrs[pslot + 1].key,
				     &right->ptrs[0].key,
				     sizeof(struct btrfs_disk_key));
			btrfs_mark_buffer_dirty(parent_buf);
			if (btrfs_header_nritems(&mid->header) <= orig_slot) {
				path->nodes[level] = right_buf;
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
					btrfs_header_nritems(&mid->header);
				btrfs_block_release(root, mid_buf);
			} else {
				btrfs_block_release(root, right_buf);
			}
			check_node(root, path, level);
			return 0;
		}
		btrfs_block_release(root, right_buf);
	}
	check_node(root, path, level);
	return 1;
}

/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
 */
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *key, struct btrfs_path *p, int
		      ins_len, int cow)
{
	struct buffer_head *b;
	struct buffer_head *cow_buf;
	struct btrfs_node *c;
	int slot;
	int ret;
	int level;

	WARN_ON(p->nodes[0] != NULL);
	WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
again:
	b = root->node;
	get_bh(b);
	while (b) {
		c = btrfs_buffer_node(b);
		level = btrfs_header_level(&c->header);
		if (cow) {
			int wret;
			wret = btrfs_cow_block(trans, root, b,
					       p->nodes[level + 1],
					       p->slots[level + 1],
					       &cow_buf);
			b = cow_buf;
			c = btrfs_buffer_node(b);
		}
		BUG_ON(!cow && ins_len);
		if (level != btrfs_header_level(&c->header))
			WARN_ON(1);
		level = btrfs_header_level(&c->header);
		p->nodes[level] = b;
		ret = check_block(root, p, level);
		if (ret)
			return -1;
		ret = bin_search(c, key, &slot);
		if (!btrfs_is_leaf(c)) {
			if (ret && slot > 0)
				slot -= 1;
			p->slots[level] = slot;
			if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
			    BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
				int sret = split_node(trans, root, p, level);
				BUG_ON(sret > 0);
				if (sret)
					return sret;
				b = p->nodes[level];
				c = btrfs_buffer_node(b);
				slot = p->slots[level];
			} else if (ins_len < 0) {
				int sret = balance_level(trans, root, p,
							 level);
				if (sret)
					return sret;
				b = p->nodes[level];
				if (!b)
					goto again;
				c = btrfs_buffer_node(b);
				slot = p->slots[level];
				BUG_ON(btrfs_header_nritems(&c->header) == 1);
			}
			b = read_tree_block(root, btrfs_node_blockptr(c, slot));
		} else {
			struct btrfs_leaf *l = (struct btrfs_leaf *)c;
			p->slots[level] = slot;
			if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
			    sizeof(struct btrfs_item) + ins_len) {
				int sret = split_leaf(trans, root, key,
						      p, ins_len);
				BUG_ON(sret > 0);
				if (sret)
					return sret;
			}
			return ret;
		}
	}
	return 1;
}

/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
 *
 * If this fails to write a tree block, it returns -1, but continues
 * fixing up the blocks in ram so the tree is consistent.
 */
static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
			  *root, struct btrfs_path *path, struct btrfs_disk_key
			  *key, int level)
{
	int i;
	int ret = 0;
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		struct btrfs_node *t;
		int tslot = path->slots[i];
		if (!path->nodes[i])
			break;
		t = btrfs_buffer_node(path->nodes[i]);
		btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
		btrfs_mark_buffer_dirty(path->nodes[i]);
		if (tslot != 0)
			break;
	}
	return ret;
}

/*
 * try to push data from one node into the next node left in the
 * tree.
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
 */
static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
			  *root, struct buffer_head *dst_buf, struct
			  buffer_head *src_buf)
{
	struct btrfs_node *src = btrfs_buffer_node(src_buf);
	struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
	int push_items = 0;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

	src_nritems = btrfs_header_nritems(&src->header);
	dst_nritems = btrfs_header_nritems(&dst->header);
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
	if (push_items <= 0) {
		return 1;
	}

	if (src_nritems < push_items)
		push_items = src_nritems;

	btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
		     push_items * sizeof(struct btrfs_key_ptr));
	if (push_items < src_nritems) {
		btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
			(src_nritems - push_items) *
			sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(&src->header, src_nritems - push_items);
	btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src_buf);
	btrfs_mark_buffer_dirty(dst_buf);
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
static int balance_node_right(struct btrfs_trans_handle *trans, struct
			      btrfs_root *root, struct buffer_head *dst_buf,
			      struct buffer_head *src_buf)
{
	struct btrfs_node *src = btrfs_buffer_node(src_buf);
	struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

	src_nritems = btrfs_header_nritems(&src->header);
	dst_nritems = btrfs_header_nritems(&dst->header);
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
	if (push_items <= 0) {
		return 1;
	}

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
	if (max_push > src_nritems)
		return 1;
	if (max_push < push_items)
		push_items = max_push;

	btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
		      dst_nritems * sizeof(struct btrfs_key_ptr));

	btrfs_memcpy(root, dst, dst->ptrs,
		     src->ptrs + src_nritems - push_items,
		     push_items * sizeof(struct btrfs_key_ptr));

	btrfs_set_header_nritems(&src->header, src_nritems - push_items);
	btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);

	btrfs_mark_buffer_dirty(src_buf);
	btrfs_mark_buffer_dirty(dst_buf);
	return ret;
}

/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
 *
 * returns zero on success or < 0 on failure.
 */
static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
			   *root, struct btrfs_path *path, int level)
{
	struct buffer_head *t;
	struct btrfs_node *lower;
	struct btrfs_node *c;
	struct btrfs_disk_key *lower_key;

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

	t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
	c = btrfs_buffer_node(t);
	memset(c, 0, root->blocksize);
	btrfs_set_header_nritems(&c->header, 1);
	btrfs_set_header_level(&c->header, level);
	btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
	btrfs_set_header_generation(&c->header, trans->transid);
	btrfs_set_header_owner(&c->header, root->root_key.objectid);
	lower = btrfs_buffer_node(path->nodes[level-1]);
	memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
	       sizeof(c->header.fsid));
	if (btrfs_is_leaf(lower))
		lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
	else
		lower_key = &lower->ptrs[0].key;
	btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
		     sizeof(struct btrfs_disk_key));
	btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));

	btrfs_mark_buffer_dirty(t);

	/* the super has an extra ref to root->node */
	btrfs_block_release(root, root->node);
	root->node = t;
	get_bh(t);
	path->nodes[level] = t;
	path->slots[level] = 0;
	return 0;
}

/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
 *
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 *
 * returns zero on success and < 0 on any error
 */
static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, struct btrfs_disk_key
		      *key, u64 blocknr, int slot, int level)
{
	struct btrfs_node *lower;
	int nritems;

	BUG_ON(!path->nodes[level]);
	lower = btrfs_buffer_node(path->nodes[level]);
	nritems = btrfs_header_nritems(&lower->header);
	if (slot > nritems)
		BUG();
	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
		BUG();
	if (slot != nritems) {
		btrfs_memmove(root, lower, lower->ptrs + slot + 1,
			      lower->ptrs + slot,
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
	}
	btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
		     key, sizeof(struct btrfs_disk_key));
	btrfs_set_node_blockptr(lower, slot, blocknr);
	btrfs_set_header_nritems(&lower->header, nritems + 1);
	btrfs_mark_buffer_dirty(path->nodes[level]);
	check_node(root, path, level);
	return 0;
}

/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
 *
 * returns 0 on success and < 0 on failure
 */
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level)
{
	struct buffer_head *t;
	struct btrfs_node *c;
	struct buffer_head *split_buffer;
	struct btrfs_node *split;
	int mid;
	int ret;
	int wret;
	u32 c_nritems;

	t = path->nodes[level];
	c = btrfs_buffer_node(t);
	if (t == root->node) {
		/* trying to split the root, lets make a new one */
		ret = insert_new_root(trans, root, path, level + 1);
		if (ret)
			return ret;
	} else {
		ret = push_nodes_for_insert(trans, root, path, level);
		t = path->nodes[level];
		c = btrfs_buffer_node(t);
		if (!ret &&
		    btrfs_header_nritems(&c->header) <
		    BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
			return 0;
	}

	c_nritems = btrfs_header_nritems(&c->header);
	split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
	split = btrfs_buffer_node(split_buffer);
	btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
	btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
	btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
	btrfs_set_header_generation(&split->header, trans->transid);
	btrfs_set_header_owner(&split->header, root->root_key.objectid);
	memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
	       sizeof(split->header.fsid));
	mid = (c_nritems + 1) / 2;
	btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
		     (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(&split->header, c_nritems - mid);
	btrfs_set_header_nritems(&c->header, mid);
	ret = 0;

	btrfs_mark_buffer_dirty(t);
	btrfs_mark_buffer_dirty(split_buffer);
	wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
			  bh_blocknr(split_buffer), path->slots[level + 1] + 1,
			  level + 1);
	if (wret)
		ret = wret;

	if (path->slots[level] >= mid) {
		path->slots[level] -= mid;
		btrfs_block_release(root, t);
		path->nodes[level] = split_buffer;
		path->slots[level + 1] += 1;
	} else {
		btrfs_block_release(root, split_buffer);
	}
	return ret;
}

/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
{
	int data_len;
	int nritems = btrfs_header_nritems(&l->header);
	int end = min(nritems, start + nr) - 1;

	if (!nr)
		return 0;
	data_len = btrfs_item_end(l->items + start);
	data_len = data_len - btrfs_item_offset(l->items + end);
	data_len += sizeof(struct btrfs_item) * nr;
	WARN_ON(data_len < 0);
	return data_len;
}

/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
{
	int nritems = btrfs_header_nritems(&leaf->header);
	return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
}

/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
			   *root, struct btrfs_path *path, int data_size)
{
	struct buffer_head *left_buf = path->nodes[0];
	struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
	struct btrfs_leaf *right;
	struct buffer_head *right_buf;
	struct buffer_head *upper;
	struct btrfs_node *upper_node;
	int slot;
	int i;
	int free_space;
	int push_space = 0;
	int push_items = 0;
	struct btrfs_item *item;
	u32 left_nritems;
	u32 right_nritems;

	slot = path->slots[1];
	if (!path->nodes[1]) {
		return 1;
	}
	upper = path->nodes[1];
	upper_node = btrfs_buffer_node(upper);
	if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
		return 1;
	}
	right_buf = read_tree_block(root,
		    btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
	right = btrfs_buffer_leaf(right_buf);
	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size + sizeof(struct btrfs_item)) {
		btrfs_block_release(root, right_buf);
		return 1;
	}
	/* cow and double check */
	btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
	right = btrfs_buffer_leaf(right_buf);
	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size + sizeof(struct btrfs_item)) {
		btrfs_block_release(root, right_buf);
		return 1;
	}

	left_nritems = btrfs_header_nritems(&left->header);
	if (left_nritems == 0) {
		btrfs_block_release(root, right_buf);
		return 1;
	}
	for (i = left_nritems - 1; i >= 1; i--) {
		item = left->items + i;
		if (path->slots[0] == i)
			push_space += data_size + sizeof(*item);
		if (btrfs_item_size(item) + sizeof(*item) + push_space >
		    free_space)
			break;
		push_items++;
		push_space += btrfs_item_size(item) + sizeof(*item);
	}
	if (push_items == 0) {
		btrfs_block_release(root, right_buf);
		return 1;
	}
	if (push_items == left_nritems)
		WARN_ON(1);
	right_nritems = btrfs_header_nritems(&right->header);
	/* push left to right */
	push_space = btrfs_item_end(left->items + left_nritems - push_items);
	push_space -= leaf_data_end(root, left);
	/* make room in the right data area */
	btrfs_memmove(root, right, btrfs_leaf_data(right) +
		      leaf_data_end(root, right) - push_space,
		      btrfs_leaf_data(right) +
		      leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
		      leaf_data_end(root, right));
	/* copy from the left data area */
	btrfs_memcpy(root, right, btrfs_leaf_data(right) +
		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
		     btrfs_leaf_data(left) + leaf_data_end(root, left),
		     push_space);
	btrfs_memmove(root, right, right->items + push_items, right->items,
		right_nritems * sizeof(struct btrfs_item));
	/* copy the items from left to right */
	btrfs_memcpy(root, right, right->items, left->items +
		     left_nritems - push_items,
		     push_items * sizeof(struct btrfs_item));

	/* update the item pointers */
	right_nritems += push_items;
	btrfs_set_header_nritems(&right->header, right_nritems);
	push_space = BTRFS_LEAF_DATA_SIZE(root);
	for (i = 0; i < right_nritems; i++) {
		btrfs_set_item_offset(right->items + i, push_space -
				      btrfs_item_size(right->items + i));
		push_space = btrfs_item_offset(right->items + i);
	}
	left_nritems -= push_items;
	btrfs_set_header_nritems(&left->header, left_nritems);

	btrfs_mark_buffer_dirty(left_buf);
	btrfs_mark_buffer_dirty(right_buf);

	btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
		&right->items[0].key, sizeof(struct btrfs_disk_key));
	btrfs_mark_buffer_dirty(upper);

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
		btrfs_block_release(root, path->nodes[0]);
		path->nodes[0] = right_buf;
		path->slots[1] += 1;
	} else {
		btrfs_block_release(root, right_buf);
	}
	if (path->nodes[1])
		check_node(root, path, 1);
	return 0;
}
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
			  *root, struct btrfs_path *path, int data_size)
{
	struct buffer_head *right_buf = path->nodes[0];
	struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
	struct buffer_head *t;
	struct btrfs_leaf *left;
	int slot;
	int i;
	int free_space;
	int push_space = 0;
	int push_items = 0;
	struct btrfs_item *item;
	u32 old_left_nritems;
	int ret = 0;
	int wret;

	slot = path->slots[1];
	if (slot == 0) {
		return 1;
	}
	if (!path->nodes[1]) {
		return 1;
	}
	t = read_tree_block(root,
	    btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
	left = btrfs_buffer_leaf(t);
	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size + sizeof(struct btrfs_item)) {
		btrfs_block_release(root, t);
		return 1;
	}

	/* cow and double check */
	btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
	left = btrfs_buffer_leaf(t);
	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size + sizeof(struct btrfs_item)) {
		btrfs_block_release(root, t);
		return 1;
	}

	if (btrfs_header_nritems(&right->header) == 0) {
		btrfs_block_release(root, t);
		return 1;
	}

	for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
		item = right->items + i;
		if (path->slots[0] == i)
			push_space += data_size + sizeof(*item);
		if (btrfs_item_size(item) + sizeof(*item) + push_space >
		    free_space)
			break;
		push_items++;
		push_space += btrfs_item_size(item) + sizeof(*item);
	}
	if (push_items == 0) {
		btrfs_block_release(root, t);
		return 1;
	}
	if (push_items == btrfs_header_nritems(&right->header))
		WARN_ON(1);
	/* push data from right to left */
	btrfs_memcpy(root, left, left->items +
		     btrfs_header_nritems(&left->header),
		     right->items, push_items * sizeof(struct btrfs_item));
	push_space = BTRFS_LEAF_DATA_SIZE(root) -
		     btrfs_item_offset(right->items + push_items -1);
	btrfs_memcpy(root, left, btrfs_leaf_data(left) +
		     leaf_data_end(root, left) - push_space,
		     btrfs_leaf_data(right) +
		     btrfs_item_offset(right->items + push_items - 1),
		     push_space);
	old_left_nritems = btrfs_header_nritems(&left->header);
	BUG_ON(old_left_nritems < 0);

	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
		u32 ioff = btrfs_item_offset(left->items + i);
		btrfs_set_item_offset(left->items + i, ioff -
				     (BTRFS_LEAF_DATA_SIZE(root) -
				      btrfs_item_offset(left->items +
						        old_left_nritems - 1)));
	}
	btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);

	/* fixup right node */
	push_space = btrfs_item_offset(right->items + push_items - 1) -
		     leaf_data_end(root, right);
	btrfs_memmove(root, right, btrfs_leaf_data(right) +
		      BTRFS_LEAF_DATA_SIZE(root) - push_space,
		      btrfs_leaf_data(right) +
		      leaf_data_end(root, right), push_space);
	btrfs_memmove(root, right, right->items, right->items + push_items,
		(btrfs_header_nritems(&right->header) - push_items) *
		sizeof(struct btrfs_item));
	btrfs_set_header_nritems(&right->header,
				 btrfs_header_nritems(&right->header) -
				 push_items);
	push_space = BTRFS_LEAF_DATA_SIZE(root);

	for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
		btrfs_set_item_offset(right->items + i, push_space -
				      btrfs_item_size(right->items + i));
		push_space = btrfs_item_offset(right->items + i);
	}

	btrfs_mark_buffer_dirty(t);
	btrfs_mark_buffer_dirty(right_buf);

	wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
	if (wret)
		ret = wret;

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
		btrfs_block_release(root, path->nodes[0]);
		path->nodes[0] = t;
		path->slots[1] -= 1;
	} else {
		btrfs_block_release(root, t);
		path->slots[0] -= push_items;
	}
	BUG_ON(path->slots[0] < 0);
	if (path->nodes[1])
		check_node(root, path, 1);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 *
 * returns 0 if all went well and < 0 on failure.
 */
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *ins_key,
		      struct btrfs_path *path, int data_size)
{
	struct buffer_head *l_buf;
	struct btrfs_leaf *l;
	u32 nritems;
	int mid;
	int slot;
	struct btrfs_leaf *right;
	struct buffer_head *right_buffer;
	int space_needed = data_size + sizeof(struct btrfs_item);
	int data_copy_size;
	int rt_data_off;
	int i;
	int ret = 0;
	int wret;
	int double_split = 0;
	struct btrfs_disk_key disk_key;

	/* first try to make some room by pushing left and right */
	wret = push_leaf_left(trans, root, path, data_size);
	if (wret < 0)
		return wret;
	if (wret) {
		wret = push_leaf_right(trans, root, path, data_size);
		if (wret < 0)
			return wret;
	}
	l_buf = path->nodes[0];
	l = btrfs_buffer_leaf(l_buf);

	/* did the pushes work? */
	if (btrfs_leaf_free_space(root, l) >=
	    sizeof(struct btrfs_item) + data_size)
		return 0;

	if (!path->nodes[1]) {
		ret = insert_new_root(trans, root, path, 1);
		if (ret)
			return ret;
	}
	slot = path->slots[0];
	nritems = btrfs_header_nritems(&l->header);
	mid = (nritems + 1)/ 2;
	right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
	BUG_ON(!right_buffer);
	right = btrfs_buffer_leaf(right_buffer);
	memset(&right->header, 0, sizeof(right->header));
	btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
	btrfs_set_header_generation(&right->header, trans->transid);
	btrfs_set_header_owner(&right->header, root->root_key.objectid);
	btrfs_set_header_level(&right->header, 0);
	memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
	       sizeof(right->header.fsid));
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + space_needed >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (slot >= nritems) {
				btrfs_cpu_key_to_disk(&disk_key, ins_key);
				btrfs_set_header_nritems(&right->header, 0);
				wret = insert_ptr(trans, root, path,
						  &disk_key,
						  bh_blocknr(right_buffer),
						  path->slots[1] + 1, 1);
				if (wret)
					ret = wret;
				btrfs_block_release(root, path->nodes[0]);
				path->nodes[0] = right_buffer;
				path->slots[0] = 0;
				path->slots[1] += 1;
				return ret;
			}
			mid = slot;
			double_split = 1;
		}
	} else {
		if (leaf_space_used(l, 0, mid + 1) + space_needed >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (slot == 0) {
				btrfs_cpu_key_to_disk(&disk_key, ins_key);
				btrfs_set_header_nritems(&right->header, 0);
				wret = insert_ptr(trans, root, path,
						  &disk_key,
						  bh_blocknr(right_buffer),
						  path->slots[1], 1);
				if (wret)
					ret = wret;
				btrfs_block_release(root, path->nodes[0]);
				path->nodes[0] = right_buffer;
				path->slots[0] = 0;
				if (path->slots[1] == 0) {
					wret = fixup_low_keys(trans, root,
					           path, &disk_key, 1);
					if (wret)
						ret = wret;
				}
				return ret;
			}
			mid = slot;
			double_split = 1;
		}
	}
	btrfs_set_header_nritems(&right->header, nritems - mid);
	data_copy_size = btrfs_item_end(l->items + mid) -
			 leaf_data_end(root, l);
	btrfs_memcpy(root, right, right->items, l->items + mid,
		     (nritems - mid) * sizeof(struct btrfs_item));
	btrfs_memcpy(root, right,
		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
		     data_copy_size, btrfs_leaf_data(l) +
		     leaf_data_end(root, l), data_copy_size);
	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
		      btrfs_item_end(l->items + mid);

	for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
		u32 ioff = btrfs_item_offset(right->items + i);
		btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
	}

	btrfs_set_header_nritems(&l->header, mid);
	ret = 0;
	wret = insert_ptr(trans, root, path, &right->items[0].key,
			  bh_blocknr(right_buffer), path->slots[1] + 1, 1);
	if (wret)
		ret = wret;
	btrfs_mark_buffer_dirty(right_buffer);
	btrfs_mark_buffer_dirty(l_buf);
	BUG_ON(path->slots[0] != slot);
	if (mid <= slot) {
		btrfs_block_release(root, path->nodes[0]);
		path->nodes[0] = right_buffer;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else
		btrfs_block_release(root, right_buffer);
	BUG_ON(path->slots[0] < 0);
	check_node(root, path, 1);

	if (!double_split)
		return ret;
	right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
	BUG_ON(!right_buffer);
	right = btrfs_buffer_leaf(right_buffer);
	memset(&right->header, 0, sizeof(right->header));
	btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
	btrfs_set_header_generation(&right->header, trans->transid);
	btrfs_set_header_owner(&right->header, root->root_key.objectid);
	btrfs_set_header_level(&right->header, 0);
	memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
	       sizeof(right->header.fsid));
	btrfs_cpu_key_to_disk(&disk_key, ins_key);
	btrfs_set_header_nritems(&right->header, 0);
	wret = insert_ptr(trans, root, path,
			  &disk_key,
			  bh_blocknr(right_buffer),
			  path->slots[1], 1);
	if (wret)
		ret = wret;
	if (path->slots[1] == 0) {
		wret = fixup_low_keys(trans, root, path, &disk_key, 1);
		if (wret)
			ret = wret;
	}
	btrfs_block_release(root, path->nodes[0]);
	path->nodes[0] = right_buffer;
	path->slots[0] = 0;
	check_node(root, path, 1);
	check_leaf(root, path, 0);
	return ret;
}

int btrfs_truncate_item(struct btrfs_trans_handle *trans,
			struct btrfs_root *root,
			struct btrfs_path *path,
			u32 new_size)
{
	int ret = 0;
	int slot;
	int slot_orig;
	struct btrfs_leaf *leaf;
	struct buffer_head *leaf_buf;
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;

	slot_orig = path->slots[0];
	leaf_buf = path->nodes[0];
	leaf = btrfs_buffer_leaf(leaf_buf);

	nritems = btrfs_header_nritems(&leaf->header);
	data_end = leaf_data_end(root, leaf);

	slot = path->slots[0];
	old_data_start = btrfs_item_offset(leaf->items + slot);
	old_size = btrfs_item_size(leaf->items + slot);
	BUG_ON(old_size <= new_size);
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
		u32 ioff = btrfs_item_offset(leaf->items + i);
		btrfs_set_item_offset(leaf->items + i,
				      ioff + size_diff);
	}
	/* shift the data */
	btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
		      data_end + size_diff, btrfs_leaf_data(leaf) +
		      data_end, old_data_start + new_size - data_end);
	btrfs_set_item_size(leaf->items + slot, new_size);
	btrfs_mark_buffer_dirty(leaf_buf);

	ret = 0;
	if (btrfs_leaf_free_space(root, leaf) < 0)
		BUG();
	check_leaf(root, path, 0);
	return ret;
}

int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, u32 data_size)
{
	int ret = 0;
	int slot;
	int slot_orig;
	struct btrfs_leaf *leaf;
	struct buffer_head *leaf_buf;
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;

	slot_orig = path->slots[0];
	leaf_buf = path->nodes[0];
	leaf = btrfs_buffer_leaf(leaf_buf);

	nritems = btrfs_header_nritems(&leaf->header);
	data_end = leaf_data_end(root, leaf);

	if (btrfs_leaf_free_space(root, leaf) < data_size)
		BUG();
	slot = path->slots[0];
	old_data = btrfs_item_end(leaf->items + slot);

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
		u32 ioff = btrfs_item_offset(leaf->items + i);
		btrfs_set_item_offset(leaf->items + i,
				      ioff - data_size);
	}
	/* shift the data */
	btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
		      data_end - data_size, btrfs_leaf_data(leaf) +
		      data_end, old_data - data_end);
	data_end = old_data;
	old_size = btrfs_item_size(leaf->items + slot);
	btrfs_set_item_size(leaf->items + slot, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf_buf);

	ret = 0;
	if (btrfs_leaf_free_space(root, leaf) < 0)
		BUG();
	check_leaf(root, path, 0);
	return ret;
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
			    *root, struct btrfs_path *path, struct btrfs_key
			    *cpu_key, u32 data_size)
{
	int ret = 0;
	int slot;
	int slot_orig;
	struct btrfs_leaf *leaf;
	struct buffer_head *leaf_buf;
	u32 nritems;
	unsigned int data_end;
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, cpu_key);

	/* create a root if there isn't one */
	if (!root->node)
		BUG();
	ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
	if (ret == 0) {
		return -EEXIST;
	}
	if (ret < 0)
		goto out;

	slot_orig = path->slots[0];
	leaf_buf = path->nodes[0];
	leaf = btrfs_buffer_leaf(leaf_buf);

	nritems = btrfs_header_nritems(&leaf->header);
	data_end = leaf_data_end(root, leaf);

	if (btrfs_leaf_free_space(root, leaf) <
	    sizeof(struct btrfs_item) + data_size) {
		BUG();
	}
	slot = path->slots[0];
	BUG_ON(slot < 0);
	if (slot != nritems) {
		int i;
		unsigned int old_data = btrfs_item_end(leaf->items + slot);

		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
		for (i = slot; i < nritems; i++) {
			u32 ioff = btrfs_item_offset(leaf->items + i);
			btrfs_set_item_offset(leaf->items + i,
					      ioff - data_size);
		}

		/* shift the items */
		btrfs_memmove(root, leaf, leaf->items + slot + 1,
			      leaf->items + slot,
			      (nritems - slot) * sizeof(struct btrfs_item));

		/* shift the data */
		btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
			      data_end - data_size, btrfs_leaf_data(leaf) +
			      data_end, old_data - data_end);
		data_end = old_data;
	}
	/* setup the item for the new data */
	btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
		     sizeof(struct btrfs_disk_key));
	btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
	btrfs_set_item_size(leaf->items + slot, data_size);
	btrfs_set_header_nritems(&leaf->header, nritems + 1);
	btrfs_mark_buffer_dirty(leaf_buf);

	ret = 0;
	if (slot == 0)
		ret = fixup_low_keys(trans, root, path, &disk_key, 1);

	if (btrfs_leaf_free_space(root, leaf) < 0)
		BUG();
	check_leaf(root, path, 0);
out:
	return ret;
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *cpu_key, void *data, u32
		      data_size)
{
	int ret = 0;
	struct btrfs_path *path;
	u8 *ptr;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	btrfs_init_path(path);
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
	if (!ret) {
		ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
				     path->slots[0], u8);
		btrfs_memcpy(root, path->nodes[0]->b_data,
			     ptr, data, data_size);
		btrfs_mark_buffer_dirty(path->nodes[0]);
	}
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	return ret;
}

/*
 * delete the pointer from a given node.
 *
 * If the delete empties a node, the node is removed from the tree,
 * continuing all the way the root if required.  The root is converted into
 * a leaf if all the nodes are emptied.
 */
static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		   struct btrfs_path *path, int level, int slot)
{
	struct btrfs_node *node;
	struct buffer_head *parent = path->nodes[level];
	u32 nritems;
	int ret = 0;
	int wret;

	node = btrfs_buffer_node(parent);
	nritems = btrfs_header_nritems(&node->header);
	if (slot != nritems -1) {
		btrfs_memmove(root, node, node->ptrs + slot,
			      node->ptrs + slot + 1,
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
	}
	nritems--;
	btrfs_set_header_nritems(&node->header, nritems);
	if (nritems == 0 && parent == root->node) {
		struct btrfs_header *header = btrfs_buffer_header(root->node);
		BUG_ON(btrfs_header_level(header) != 1);
		/* just turn the root into a leaf and break */
		btrfs_set_header_level(header, 0);
	} else if (slot == 0) {
		wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
				      level + 1);
		if (wret)
			ret = wret;
	}
	btrfs_mark_buffer_dirty(parent);
	return ret;
}

/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		   struct btrfs_path *path)
{
	int slot;
	struct btrfs_leaf *leaf;
	struct buffer_head *leaf_buf;
	int doff;
	int dsize;
	int ret = 0;
	int wret;
	u32 nritems;

	leaf_buf = path->nodes[0];
	leaf = btrfs_buffer_leaf(leaf_buf);
	slot = path->slots[0];
	doff = btrfs_item_offset(leaf->items + slot);
	dsize = btrfs_item_size(leaf->items + slot);
	nritems = btrfs_header_nritems(&leaf->header);

	if (slot != nritems - 1) {
		int i;
		int data_end = leaf_data_end(root, leaf);
		btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
			      data_end + dsize,
			      btrfs_leaf_data(leaf) + data_end,
			      doff - data_end);
		for (i = slot + 1; i < nritems; i++) {
			u32 ioff = btrfs_item_offset(leaf->items + i);
			btrfs_set_item_offset(leaf->items + i, ioff + dsize);
		}
		btrfs_memmove(root, leaf, leaf->items + slot,
			      leaf->items + slot + 1,
			      sizeof(struct btrfs_item) *
			      (nritems - slot - 1));
	}
	btrfs_set_header_nritems(&leaf->header, nritems - 1);
	nritems--;
	/* delete the leaf if we've emptied it */
	if (nritems == 0) {
		if (leaf_buf == root->node) {
			btrfs_set_header_level(&leaf->header, 0);
		} else {
			clean_tree_block(trans, root, leaf_buf);
			wait_on_buffer(leaf_buf);
			wret = del_ptr(trans, root, path, 1, path->slots[1]);
			if (wret)
				ret = wret;
			wret = btrfs_free_extent(trans, root,
						 bh_blocknr(leaf_buf), 1, 1);
			if (wret)
				ret = wret;
		}
	} else {
		int used = leaf_space_used(leaf, 0, nritems);
		if (slot == 0) {
			wret = fixup_low_keys(trans, root, path,
					      &leaf->items[0].key, 1);
			if (wret)
				ret = wret;
		}

		/* delete the leaf if it is mostly empty */
		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
			slot = path->slots[1];
			get_bh(leaf_buf);
			wret = push_leaf_left(trans, root, path, 1);
			if (wret < 0)
				ret = wret;
			if (path->nodes[0] == leaf_buf &&
			    btrfs_header_nritems(&leaf->header)) {
				wret = push_leaf_right(trans, root, path, 1);
				if (wret < 0)
					ret = wret;
			}
			if (btrfs_header_nritems(&leaf->header) == 0) {
				u64 blocknr = bh_blocknr(leaf_buf);
				clean_tree_block(trans, root, leaf_buf);
				wait_on_buffer(leaf_buf);
				wret = del_ptr(trans, root, path, 1, slot);
				if (wret)
					ret = wret;
				btrfs_block_release(root, leaf_buf);
				wret = btrfs_free_extent(trans, root, blocknr,
							 1, 1);
				if (wret)
					ret = wret;
			} else {
				btrfs_mark_buffer_dirty(leaf_buf);
				btrfs_block_release(root, leaf_buf);
			}
		} else {
			btrfs_mark_buffer_dirty(leaf_buf);
		}
	}
	return ret;
}

/*
 * walk up the tree as far as required to find the next leaf.
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
 */
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
	int slot;
	int level = 1;
	u64 blocknr;
	struct buffer_head *c;
	struct btrfs_node *c_node;
	struct buffer_head *next = NULL;

	while(level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level])
			return 1;
		slot = path->slots[level] + 1;
		c = path->nodes[level];
		c_node = btrfs_buffer_node(c);
		if (slot >= btrfs_header_nritems(&c_node->header)) {
			level++;
			continue;
		}
		blocknr = btrfs_node_blockptr(c_node, slot);
		if (next)
			btrfs_block_release(root, next);
		next = read_tree_block(root, blocknr);
		break;
	}
	path->slots[level] = slot;
	while(1) {
		level--;
		c = path->nodes[level];
		btrfs_block_release(root, c);
		path->nodes[level] = next;
		path->slots[level] = 0;
		if (!level)
			break;
		next = read_tree_block(root,
		       btrfs_node_blockptr(btrfs_buffer_node(next), 0));
	}
	return 0;
}