1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include "tsens.h"
#define S0_ST_ADDR 0x1030
#define SN_ADDR_OFFSET 0x4
#define SN_ST_TEMP_MASK 0x3ff
#define CAL_DEGC_PT1 30
#define CAL_DEGC_PT2 120
#define SLOPE_FACTOR 1000
#define SLOPE_DEFAULT 3200
char *qfprom_read(struct device *dev, const char *cname)
{
struct nvmem_cell *cell;
ssize_t data;
char *ret;
cell = nvmem_cell_get(dev, cname);
if (IS_ERR(cell))
return ERR_CAST(cell);
ret = nvmem_cell_read(cell, &data);
nvmem_cell_put(cell);
return ret;
}
/*
* Use this function on devices where slope and offset calculations
* depend on calibration data read from qfprom. On others the slope
* and offset values are derived from tz->tzp->slope and tz->tzp->offset
* resp.
*/
void compute_intercept_slope(struct tsens_device *tmdev, u32 *p1,
u32 *p2, u32 mode)
{
int i;
int num, den;
for (i = 0; i < tmdev->num_sensors; i++) {
dev_dbg(tmdev->dev,
"sensor%d - data_point1:%#x data_point2:%#x\n",
i, p1[i], p2[i]);
tmdev->sensor[i].slope = SLOPE_DEFAULT;
if (mode == TWO_PT_CALIB) {
/*
* slope (m) = adc_code2 - adc_code1 (y2 - y1)/
* temp_120_degc - temp_30_degc (x2 - x1)
*/
num = p2[i] - p1[i];
num *= SLOPE_FACTOR;
den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
tmdev->sensor[i].slope = num / den;
}
tmdev->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
(CAL_DEGC_PT1 *
tmdev->sensor[i].slope);
dev_dbg(tmdev->dev, "offset:%d\n", tmdev->sensor[i].offset);
}
}
static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
{
int degc, num, den;
num = (adc_code * SLOPE_FACTOR) - s->offset;
den = s->slope;
if (num > 0)
degc = num + (den / 2);
else if (num < 0)
degc = num - (den / 2);
else
degc = num;
degc /= den;
return degc;
}
int get_temp_common(struct tsens_device *tmdev, int id, int *temp)
{
struct tsens_sensor *s = &tmdev->sensor[id];
u32 code;
unsigned int sensor_addr;
int last_temp = 0, ret;
sensor_addr = S0_ST_ADDR + s->hw_id * SN_ADDR_OFFSET;
ret = regmap_read(tmdev->map, sensor_addr, &code);
if (ret)
return ret;
last_temp = code & SN_ST_TEMP_MASK;
*temp = code_to_degc(last_temp, s) * 1000;
return 0;
}
static const struct regmap_config tsens_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
int __init init_common(struct tsens_device *tmdev)
{
void __iomem *base;
base = of_iomap(tmdev->dev->of_node, 0);
if (IS_ERR(base))
return -EINVAL;
tmdev->map = devm_regmap_init_mmio(tmdev->dev, base, &tsens_config);
if (!tmdev->map) {
iounmap(base);
return -ENODEV;
}
return 0;
}
|