1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
|
/*
* Sonics Silicon Backplane PCI-Hostbus related functions.
*
* Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
*
* Derived from the Broadcom 4400 device driver.
* Copyright (C) 2002 David S. Miller (davem@redhat.com)
* Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ssb_private.h"
/* Define the following to 1 to enable a printk on each coreswitch. */
#define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
/* Lowlevel coreswitching */
int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
{
int err;
int attempts = 0;
u32 cur_core;
while (1) {
err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
(coreidx * SSB_CORE_SIZE)
+ SSB_ENUM_BASE);
if (err)
goto error;
err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
&cur_core);
if (err)
goto error;
cur_core = (cur_core - SSB_ENUM_BASE)
/ SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
unsigned long flags;
#if SSB_VERBOSE_PCICORESWITCH_DEBUG
ssb_printk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
#endif
spin_lock_irqsave(&bus->bar_lock, flags);
err = ssb_pci_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
spin_unlock_irqrestore(&bus->bar_lock, flags);
return err;
}
/* Enable/disable the on board crystal oscillator and/or PLL. */
int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
{
int err;
u32 in, out, outenable;
u16 pci_status;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
if (err)
goto err_pci;
outenable |= what;
if (turn_on) {
/* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (!(in & SSB_GPIO_XTAL)) {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal on */
out |= SSB_GPIO_XTAL;
if (what & SSB_GPIO_PLL)
out |= SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
outenable);
if (err)
goto err_pci;
msleep(1);
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL on */
out &= ~SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
msleep(5);
}
}
err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
if (err)
goto err_pci;
pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
if (err)
goto err_pci;
} else {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal off */
out &= ~SSB_GPIO_XTAL;
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL off */
out |= SSB_GPIO_PLL;
}
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
if (err)
goto err_pci;
}
out:
return err;
err_pci:
printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
err = -EBUSY;
goto out;
}
/* Get the word-offset for a SSB_SPROM_XXX define. */
#define SPOFF(offset) ((offset) / sizeof(u16))
/* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
#define SPEX16(_outvar, _offset, _mask, _shift) \
out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
#define SPEX32(_outvar, _offset, _mask, _shift) \
out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \
in[SPOFF(_offset)]) & (_mask)) >> (_shift))
#define SPEX(_outvar, _offset, _mask, _shift) \
SPEX16(_outvar, _offset, _mask, _shift)
static inline u8 ssb_crc8(u8 crc, u8 data)
{
/* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
static const u8 t[] = {
0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
};
return t[crc ^ data];
}
static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
{
int word;
u8 crc = 0xFF;
for (word = 0; word < size - 1; word++) {
crc = ssb_crc8(crc, sprom[word] & 0x00FF);
crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
}
crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
crc ^= 0xFF;
return crc;
}
static int sprom_check_crc(const u16 *sprom, size_t size)
{
u8 crc;
u8 expected_crc;
u16 tmp;
crc = ssb_sprom_crc(sprom, size);
tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
if (crc != expected_crc)
return -EPROTO;
return 0;
}
static int sprom_do_read(struct ssb_bus *bus, u16 *sprom)
{
int i;
for (i = 0; i < bus->sprom_size; i++)
sprom[i] = ioread16(bus->mmio + bus->sprom_offset + (i * 2));
return 0;
}
static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
{
struct pci_dev *pdev = bus->host_pci;
int i, err;
u32 spromctl;
u16 size = bus->sprom_size;
ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl |= SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
ssb_printk(KERN_NOTICE PFX "[ 0%%");
msleep(500);
for (i = 0; i < size; i++) {
if (i == size / 4)
ssb_printk("25%%");
else if (i == size / 2)
ssb_printk("50%%");
else if (i == (size * 3) / 4)
ssb_printk("75%%");
else if (i % 2)
ssb_printk(".");
writew(sprom[i], bus->mmio + bus->sprom_offset + (i * 2));
mmiowb();
msleep(20);
}
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl &= ~SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
msleep(500);
ssb_printk("100%% ]\n");
ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
return 0;
err_ctlreg:
ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
return err;
}
static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
u16 mask, u16 shift)
{
u16 v;
u8 gain;
v = in[SPOFF(SSB_SPROM1_AGAIN)];
gain = (v & mask) >> shift;
if (gain == 0xFF)
gain = 2; /* If unset use 2dBm */
if (sprom_revision == 1) {
/* Convert to Q5.2 */
gain <<= 2;
} else {
/* Q5.2 Fractional part is stored in 0xC0 */
gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
}
return (s8)gain;
}
static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
s8 gain;
u16 loc[3];
if (out->revision == 3) /* rev 3 moved MAC */
loc[0] = SSB_SPROM3_IL0MAC;
else {
loc[0] = SSB_SPROM1_IL0MAC;
loc[1] = SSB_SPROM1_ET0MAC;
loc[2] = SSB_SPROM1_ET1MAC;
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[0]) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
if (out->revision < 3) { /* only rev 1-2 have et0, et1 */
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[1]) + i];
*(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[2]) + i];
*(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
}
}
SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
SSB_SPROM1_ETHPHY_ET1A_SHIFT);
SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
SSB_SPROM1_BINF_CCODE_SHIFT);
SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
SSB_SPROM1_BINF_ANTA_SHIFT);
SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
SSB_SPROM1_BINF_ANTBG_SHIFT);
SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
SSB_SPROM1_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
SSB_SPROM1_GPIOB_P3_SHIFT);
SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
SSB_SPROM1_MAXPWR_A_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
SSB_SPROM1_ITSSI_A_SHIFT);
SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
if (out->revision >= 2)
SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
/* Extract the antenna gain values. */
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_BG,
SSB_SPROM1_AGAIN_BG_SHIFT);
out->antenna_gain.ghz24.a0 = gain;
out->antenna_gain.ghz24.a1 = gain;
out->antenna_gain.ghz24.a2 = gain;
out->antenna_gain.ghz24.a3 = gain;
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_A,
SSB_SPROM1_AGAIN_A_SHIFT);
out->antenna_gain.ghz5.a0 = gain;
out->antenna_gain.ghz5.a1 = gain;
out->antenna_gain.ghz5.a2 = gain;
out->antenna_gain.ghz5.a3 = gain;
}
/* Revs 4 5 and 8 have partially shared layout */
static void sprom_extract_r458(struct ssb_sprom *out, const u16 *in)
{
SPEX(txpid2g[0], SSB_SPROM4_TXPID2G01,
SSB_SPROM4_TXPID2G0, SSB_SPROM4_TXPID2G0_SHIFT);
SPEX(txpid2g[1], SSB_SPROM4_TXPID2G01,
SSB_SPROM4_TXPID2G1, SSB_SPROM4_TXPID2G1_SHIFT);
SPEX(txpid2g[2], SSB_SPROM4_TXPID2G23,
SSB_SPROM4_TXPID2G2, SSB_SPROM4_TXPID2G2_SHIFT);
SPEX(txpid2g[3], SSB_SPROM4_TXPID2G23,
SSB_SPROM4_TXPID2G3, SSB_SPROM4_TXPID2G3_SHIFT);
SPEX(txpid5gl[0], SSB_SPROM4_TXPID5GL01,
SSB_SPROM4_TXPID5GL0, SSB_SPROM4_TXPID5GL0_SHIFT);
SPEX(txpid5gl[1], SSB_SPROM4_TXPID5GL01,
SSB_SPROM4_TXPID5GL1, SSB_SPROM4_TXPID5GL1_SHIFT);
SPEX(txpid5gl[2], SSB_SPROM4_TXPID5GL23,
SSB_SPROM4_TXPID5GL2, SSB_SPROM4_TXPID5GL2_SHIFT);
SPEX(txpid5gl[3], SSB_SPROM4_TXPID5GL23,
SSB_SPROM4_TXPID5GL3, SSB_SPROM4_TXPID5GL3_SHIFT);
SPEX(txpid5g[0], SSB_SPROM4_TXPID5G01,
SSB_SPROM4_TXPID5G0, SSB_SPROM4_TXPID5G0_SHIFT);
SPEX(txpid5g[1], SSB_SPROM4_TXPID5G01,
SSB_SPROM4_TXPID5G1, SSB_SPROM4_TXPID5G1_SHIFT);
SPEX(txpid5g[2], SSB_SPROM4_TXPID5G23,
SSB_SPROM4_TXPID5G2, SSB_SPROM4_TXPID5G2_SHIFT);
SPEX(txpid5g[3], SSB_SPROM4_TXPID5G23,
SSB_SPROM4_TXPID5G3, SSB_SPROM4_TXPID5G3_SHIFT);
SPEX(txpid5gh[0], SSB_SPROM4_TXPID5GH01,
SSB_SPROM4_TXPID5GH0, SSB_SPROM4_TXPID5GH0_SHIFT);
SPEX(txpid5gh[1], SSB_SPROM4_TXPID5GH01,
SSB_SPROM4_TXPID5GH1, SSB_SPROM4_TXPID5GH1_SHIFT);
SPEX(txpid5gh[2], SSB_SPROM4_TXPID5GH23,
SSB_SPROM4_TXPID5GH2, SSB_SPROM4_TXPID5GH2_SHIFT);
SPEX(txpid5gh[3], SSB_SPROM4_TXPID5GH23,
SSB_SPROM4_TXPID5GH3, SSB_SPROM4_TXPID5GH3_SHIFT);
}
static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
u16 il0mac_offset;
if (out->revision == 4)
il0mac_offset = SSB_SPROM4_IL0MAC;
else
il0mac_offset = SSB_SPROM5_IL0MAC;
/* extract the MAC address */
for (i = 0; i < 3; i++) {
v = in[SPOFF(il0mac_offset) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
SSB_SPROM4_ETHPHY_ET1A_SHIFT);
if (out->revision == 4) {
SPEX(country_code, SSB_SPROM4_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
SPEX(boardflags2_lo, SSB_SPROM4_BFL2LO, 0xFFFF, 0);
SPEX(boardflags2_hi, SSB_SPROM4_BFL2HI, 0xFFFF, 0);
} else {
SPEX(country_code, SSB_SPROM5_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0);
SPEX(boardflags2_lo, SSB_SPROM5_BFL2LO, 0xFFFF, 0);
SPEX(boardflags2_hi, SSB_SPROM5_BFL2HI, 0xFFFF, 0);
}
SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
SSB_SPROM4_ANTAVAIL_A_SHIFT);
SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
SSB_SPROM4_ANTAVAIL_BG_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
SSB_SPROM4_ITSSI_BG_SHIFT);
SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
SSB_SPROM4_ITSSI_A_SHIFT);
if (out->revision == 4) {
SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
SSB_SPROM4_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
SSB_SPROM4_GPIOB_P3_SHIFT);
} else {
SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1,
SSB_SPROM5_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3,
SSB_SPROM5_GPIOB_P3_SHIFT);
}
/* Extract the antenna gain values. */
SPEX(antenna_gain.ghz24.a0, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
SPEX(antenna_gain.ghz24.a1, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
SPEX(antenna_gain.ghz24.a2, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
SPEX(antenna_gain.ghz24.a3, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
sizeof(out->antenna_gain.ghz5));
sprom_extract_r458(out, in);
/* TODO - get remaining rev 4 stuff needed */
}
static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
/* extract the MAC address */
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM8_IL0MAC) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
SPEX(country_code, SSB_SPROM8_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0);
SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0);
SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0);
SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A,
SSB_SPROM8_ANTAVAIL_A_SHIFT);
SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG,
SSB_SPROM8_ANTAVAIL_BG_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0);
SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG,
SSB_SPROM8_ITSSI_BG_SHIFT);
SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0);
SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A,
SSB_SPROM8_ITSSI_A_SHIFT);
SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0);
SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK,
SSB_SPROM8_MAXP_AL_SHIFT);
SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1,
SSB_SPROM8_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3,
SSB_SPROM8_GPIOB_P3_SHIFT);
SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0);
SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G,
SSB_SPROM8_TRI5G_SHIFT);
SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0);
SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH,
SSB_SPROM8_TRI5GH_SHIFT);
SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0);
SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G,
SSB_SPROM8_RXPO5G_SHIFT);
SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0);
SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G,
SSB_SPROM8_RSSISMC2G_SHIFT);
SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G,
SSB_SPROM8_RSSISAV2G_SHIFT);
SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G,
SSB_SPROM8_BXA2G_SHIFT);
SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0);
SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G,
SSB_SPROM8_RSSISMC5G_SHIFT);
SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G,
SSB_SPROM8_RSSISAV5G_SHIFT);
SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G,
SSB_SPROM8_BXA5G_SHIFT);
SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0);
SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0);
SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0);
SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0);
SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0);
SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0);
SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0);
SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0);
SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0);
SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0);
SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0);
SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0);
SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0);
SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0);
SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0);
SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0);
SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0);
/* Extract the antenna gain values. */
SPEX(antenna_gain.ghz24.a0, SSB_SPROM8_AGAIN01,
SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT);
SPEX(antenna_gain.ghz24.a1, SSB_SPROM8_AGAIN01,
SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT);
SPEX(antenna_gain.ghz24.a2, SSB_SPROM8_AGAIN23,
SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT);
SPEX(antenna_gain.ghz24.a3, SSB_SPROM8_AGAIN23,
SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT);
memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
sizeof(out->antenna_gain.ghz5));
sprom_extract_r458(out, in);
/* TODO - get remaining rev 8 stuff needed */
}
static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
const u16 *in, u16 size)
{
memset(out, 0, sizeof(*out));
out->revision = in[size - 1] & 0x00FF;
ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */
memset(out->et1mac, 0xFF, 6);
if ((bus->chip_id & 0xFF00) == 0x4400) {
/* Workaround: The BCM44XX chip has a stupid revision
* number stored in the SPROM.
* Always extract r1. */
out->revision = 1;
ssb_dprintk(KERN_DEBUG PFX "SPROM treated as revision %d\n", out->revision);
}
switch (out->revision) {
case 1:
case 2:
case 3:
sprom_extract_r123(out, in);
break;
case 4:
case 5:
sprom_extract_r45(out, in);
break;
case 8:
sprom_extract_r8(out, in);
break;
default:
ssb_printk(KERN_WARNING PFX "Unsupported SPROM"
" revision %d detected. Will extract"
" v1\n", out->revision);
out->revision = 1;
sprom_extract_r123(out, in);
}
if (out->boardflags_lo == 0xFFFF)
out->boardflags_lo = 0; /* per specs */
if (out->boardflags_hi == 0xFFFF)
out->boardflags_hi = 0; /* per specs */
return 0;
}
static int ssb_pci_sprom_get(struct ssb_bus *bus,
struct ssb_sprom *sprom)
{
int err;
u16 *buf;
if (!ssb_is_sprom_available(bus)) {
ssb_printk(KERN_ERR PFX "No SPROM available!\n");
return -ENODEV;
}
if (bus->chipco.dev) { /* can be unavailable! */
/*
* get SPROM offset: SSB_SPROM_BASE1 except for
* chipcommon rev >= 31 or chip ID is 0x4312 and
* chipcommon status & 3 == 2
*/
if (bus->chipco.dev->id.revision >= 31)
bus->sprom_offset = SSB_SPROM_BASE31;
else if (bus->chip_id == 0x4312 &&
(bus->chipco.status & 0x03) == 2)
bus->sprom_offset = SSB_SPROM_BASE31;
else
bus->sprom_offset = SSB_SPROM_BASE1;
} else {
bus->sprom_offset = SSB_SPROM_BASE1;
}
ssb_dprintk(KERN_INFO PFX "SPROM offset is 0x%x\n", bus->sprom_offset);
buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
if (!buf)
return -ENOMEM;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
if (err) {
/* try for a 440 byte SPROM - revision 4 and higher */
kfree(buf);
buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
GFP_KERNEL);
if (!buf)
return -ENOMEM;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
if (err) {
/* All CRC attempts failed.
* Maybe there is no SPROM on the device?
* Now we ask the arch code if there is some sprom
* available for this device in some other storage */
err = ssb_fill_sprom_with_fallback(bus, sprom);
if (err) {
ssb_printk(KERN_WARNING PFX "WARNING: Using"
" fallback SPROM failed (err %d)\n",
err);
} else {
ssb_dprintk(KERN_DEBUG PFX "Using SPROM"
" revision %d provided by"
" platform.\n", sprom->revision);
err = 0;
goto out_free;
}
ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
" SPROM CRC (corrupt SPROM)\n");
}
}
err = sprom_extract(bus, sprom, buf, bus->sprom_size);
out_free:
kfree(buf);
return err;
}
static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
struct ssb_boardinfo *bi)
{
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID,
&bi->vendor);
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID,
&bi->type);
bi->rev = bus->host_pci->revision;
}
int ssb_pci_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv)
{
int err;
err = ssb_pci_sprom_get(bus, &iv->sprom);
if (err)
goto out;
ssb_pci_get_boardinfo(bus, &iv->boardinfo);
out:
return err;
}
#ifdef CONFIG_SSB_DEBUG
static int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
if (likely(bus->powered_up))
return 0;
printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
"while accessing PCI MMIO space\n");
if (bus->power_warn_count <= 10) {
bus->power_warn_count++;
dump_stack();
}
return -ENODEV;
}
#else /* DEBUG */
static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
return 0;
}
#endif /* DEBUG */
static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFF;
}
return ioread8(bus->mmio + offset);
}
static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFF;
}
return ioread16(bus->mmio + offset);
}
static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFFFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFFFFFF;
}
return ioread32(bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_pci_block_read(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr = bus->mmio + offset;
if (unlikely(ssb_pci_assert_buspower(bus)))
goto error;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
goto error;
}
switch (reg_width) {
case sizeof(u8):
ioread8_rep(addr, buffer, count);
break;
case sizeof(u16):
SSB_WARN_ON(count & 1);
ioread16_rep(addr, buffer, count >> 1);
break;
case sizeof(u32):
SSB_WARN_ON(count & 3);
ioread32_rep(addr, buffer, count >> 2);
break;
default:
SSB_WARN_ON(1);
}
return;
error:
memset(buffer, 0xFF, count);
}
#endif /* CONFIG_SSB_BLOCKIO */
static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite8(value, bus->mmio + offset);
}
static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite16(value, bus->mmio + offset);
}
static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite32(value, bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr = bus->mmio + offset;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
switch (reg_width) {
case sizeof(u8):
iowrite8_rep(addr, buffer, count);
break;
case sizeof(u16):
SSB_WARN_ON(count & 1);
iowrite16_rep(addr, buffer, count >> 1);
break;
case sizeof(u32):
SSB_WARN_ON(count & 3);
iowrite32_rep(addr, buffer, count >> 2);
break;
default:
SSB_WARN_ON(1);
}
}
#endif /* CONFIG_SSB_BLOCKIO */
/* Not "static", as it's used in main.c */
const struct ssb_bus_ops ssb_pci_ops = {
.read8 = ssb_pci_read8,
.read16 = ssb_pci_read16,
.read32 = ssb_pci_read32,
.write8 = ssb_pci_write8,
.write16 = ssb_pci_write16,
.write32 = ssb_pci_write32,
#ifdef CONFIG_SSB_BLOCKIO
.block_read = ssb_pci_block_read,
.block_write = ssb_pci_block_write,
#endif
};
static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
return -ENODEV;
return ssb_attr_sprom_show(bus, buf, sprom_do_read);
}
static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
return -ENODEV;
return ssb_attr_sprom_store(bus, buf, count,
sprom_check_crc, sprom_do_write);
}
static DEVICE_ATTR(ssb_sprom, 0600,
ssb_pci_attr_sprom_show,
ssb_pci_attr_sprom_store);
void ssb_pci_exit(struct ssb_bus *bus)
{
struct pci_dev *pdev;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
pdev = bus->host_pci;
device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
}
int ssb_pci_init(struct ssb_bus *bus)
{
struct pci_dev *pdev;
int err;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
pdev = bus->host_pci;
mutex_init(&bus->sprom_mutex);
err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
if (err)
goto out;
out:
return err;
}
|