1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include "iwl-drv.h"
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
HW_ADDR = 0x15,
/* NVM SW-Section offset (in words) definitions */
NVM_SW_SECTION = 0x1C0,
NVM_VERSION = 0,
RADIO_CFG = 1,
SKU = 2,
N_HW_ADDRS = 3,
NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
/* NVM calibration section offset (in words) definitions */
NVM_CALIB_SECTION = 0x2B8,
XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};
enum family_8000_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
/* NVM SW-Section offset (in words) definitions */
NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
NVM_VERSION_FAMILY_8000 = 0,
RADIO_CFG_FAMILY_8000 = 2,
SKU_FAMILY_8000 = 4,
N_HW_ADDRS_FAMILY_8000 = 5,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_FAMILY_8000 = 0,
/* NVM calibration section offset (in words) definitions */
NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
};
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
NVM_SKU_CAP_BAND_24GHZ = BIT(0),
NVM_SKU_CAP_BAND_52GHZ = BIT(1),
NVM_SKU_CAP_11N_ENABLE = BIT(2),
NVM_SKU_CAP_11AC_ENABLE = BIT(3),
};
/*
* These are the channel numbers in the order that they are stored in the NVM
*/
static const u8 iwl_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44 , 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165
};
static const u8 iwl_nvm_channels_family_8000[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181
};
#define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
#define NUM_2GHZ_CHANNELS 14
#define NUM_2GHZ_CHANNELS_FAMILY_8000 14
#define FIRST_2GHZ_HT_MINUS 5
#define LAST_2GHZ_HT_PLUS 9
#define LAST_5GHZ_HT 161
#define DEFAULT_MAX_TX_POWER 16
/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS 0
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS 4
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
/**
* enum iwl_nvm_channel_flags - channel flags in NVM
* @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
* @NVM_CHANNEL_IBSS: usable as an IBSS channel
* @NVM_CHANNEL_ACTIVE: active scanning allowed
* @NVM_CHANNEL_RADAR: radar detection required
* @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
* @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
* on same channel on 2.4 or same UNII band on 5.2
* @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
* @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
* @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
* @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
*/
enum iwl_nvm_channel_flags {
NVM_CHANNEL_VALID = BIT(0),
NVM_CHANNEL_IBSS = BIT(1),
NVM_CHANNEL_ACTIVE = BIT(3),
NVM_CHANNEL_RADAR = BIT(4),
NVM_CHANNEL_INDOOR_ONLY = BIT(5),
NVM_CHANNEL_GO_CONCURRENT = BIT(6),
NVM_CHANNEL_WIDE = BIT(8),
NVM_CHANNEL_40MHZ = BIT(9),
NVM_CHANNEL_80MHZ = BIT(10),
NVM_CHANNEL_160MHZ = BIT(11),
};
#define CHECK_AND_PRINT_I(x) \
((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 * const nvm_ch_flags)
{
int ch_idx;
int n_channels = 0;
struct ieee80211_channel *channel;
u16 ch_flags;
bool is_5ghz;
int num_of_ch, num_2ghz_channels;
const u8 *nvm_chan;
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
num_of_ch = IWL_NUM_CHANNELS;
nvm_chan = &iwl_nvm_channels[0];
num_2ghz_channels = NUM_2GHZ_CHANNELS;
} else {
num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
nvm_chan = &iwl_nvm_channels_family_8000[0];
num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
}
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
if (ch_idx >= num_2ghz_channels &&
!data->sku_cap_band_52GHz_enable)
ch_flags &= ~NVM_CHANNEL_VALID;
if (!(ch_flags & NVM_CHANNEL_VALID)) {
IWL_DEBUG_EEPROM(dev,
"Ch. %d Flags %x [%sGHz] - No traffic\n",
nvm_chan[ch_idx],
ch_flags,
(ch_idx >= num_2ghz_channels) ?
"5.2" : "2.4");
continue;
}
channel = &data->channels[n_channels];
n_channels++;
channel->hw_value = nvm_chan[ch_idx];
channel->band = (ch_idx < num_2ghz_channels) ?
IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
channel->center_freq =
ieee80211_channel_to_frequency(
channel->hw_value, channel->band);
/* TODO: Need to be dependent to the NVM */
channel->flags = IEEE80211_CHAN_NO_HT40;
if (ch_idx < num_2ghz_channels &&
(ch_flags & NVM_CHANNEL_40MHZ)) {
if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
} else if (nvm_chan[ch_idx] <= LAST_5GHZ_HT &&
(ch_flags & NVM_CHANNEL_40MHZ)) {
if ((ch_idx - num_2ghz_channels) % 2 == 0)
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
else
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
}
if (!(ch_flags & NVM_CHANNEL_80MHZ))
channel->flags |= IEEE80211_CHAN_NO_80MHZ;
if (!(ch_flags & NVM_CHANNEL_160MHZ))
channel->flags |= IEEE80211_CHAN_NO_160MHZ;
if (!(ch_flags & NVM_CHANNEL_IBSS))
channel->flags |= IEEE80211_CHAN_NO_IR;
if (!(ch_flags & NVM_CHANNEL_ACTIVE))
channel->flags |= IEEE80211_CHAN_NO_IR;
if (ch_flags & NVM_CHANNEL_RADAR)
channel->flags |= IEEE80211_CHAN_RADAR;
if (ch_flags & NVM_CHANNEL_INDOOR_ONLY)
channel->flags |= IEEE80211_CHAN_INDOOR_ONLY;
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((ch_flags & NVM_CHANNEL_GO_CONCURRENT) &&
(channel->flags & IEEE80211_CHAN_NO_IR))
channel->flags |= IEEE80211_CHAN_GO_CONCURRENT;
/* Initialize regulatory-based run-time data */
/*
* Default value - highest tx power value. max_power
* is not used in mvm, and is used for backwards compatibility
*/
channel->max_power = DEFAULT_MAX_TX_POWER;
is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
IWL_DEBUG_EEPROM(dev,
"Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
channel->hw_value,
is_5ghz ? "5.2" : "2.4",
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(WIDE),
CHECK_AND_PRINT_I(INDOOR_ONLY),
CHECK_AND_PRINT_I(GO_CONCURRENT),
ch_flags,
channel->max_power,
((ch_flags & NVM_CHANNEL_IBSS) &&
!(ch_flags & NVM_CHANNEL_RADAR))
? "" : "not ");
}
return n_channels;
}
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
struct ieee80211_sta_vht_cap *vht_cap,
u8 tx_chains, u8 rx_chains)
{
int num_rx_ants = num_of_ant(rx_chains);
int num_tx_ants = num_of_ant(tx_chains);
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
if (num_tx_ants > 1)
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
else
vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
if (iwlwifi_mod_params.amsdu_size_8K)
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
vht_cap->vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
/* this works because NOT_SUPPORTED == 3 */
vht_cap->vht_mcs.rx_mcs_map |=
cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
}
vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *ch_section, bool enable_vht,
u8 tx_chains, u8 rx_chains)
{
int n_channels;
int n_used = 0;
struct ieee80211_supported_band *sband;
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
n_channels = iwl_init_channel_map(
dev, cfg, data,
&ch_section[NVM_CHANNELS]);
else
n_channels = iwl_init_channel_map(
dev, cfg, data,
&ch_section[NVM_CHANNELS_FAMILY_8000]);
sband = &data->bands[IEEE80211_BAND_2GHZ];
sband->band = IEEE80211_BAND_2GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
sband->n_bitrates = N_RATES_24;
n_used += iwl_init_sband_channels(data, sband, n_channels,
IEEE80211_BAND_2GHZ);
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
tx_chains, rx_chains);
sband = &data->bands[IEEE80211_BAND_5GHZ];
sband->band = IEEE80211_BAND_5GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels,
IEEE80211_BAND_5GHZ);
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
tx_chains, rx_chains);
if (enable_vht)
iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
tx_chains, rx_chains);
if (n_channels != n_used)
IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
n_used, n_channels);
}
static int iwl_get_sku(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + SKU);
else
return le32_to_cpup((__le32 *)(nvm_sw + SKU_FAMILY_8000));
}
static int iwl_get_nvm_version(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + NVM_VERSION);
else
return le32_to_cpup((__le32 *)(nvm_sw +
NVM_VERSION_FAMILY_8000));
}
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + RADIO_CFG);
else
return le32_to_cpup((__le32 *)(nvm_sw + RADIO_CFG_FAMILY_8000));
}
#define N_HW_ADDRS_MASK_FAMILY_8000 0xF
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + N_HW_ADDRS);
else
return le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000))
& N_HW_ADDRS_MASK_FAMILY_8000;
}
static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
u32 radio_cfg)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
return;
}
/* set the radio configuration for family 8000 */
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
}
static void iwl_set_hw_address(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *nvm_sec)
{
const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
/* The byte order is little endian 16 bit, meaning 214365 */
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
}
static void iwl_set_hw_address_family_8000(struct device *dev,
const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *mac_override,
const __le16 *nvm_hw)
{
const u8 *hw_addr;
if (mac_override) {
hw_addr = (const u8 *)(mac_override +
MAC_ADDRESS_OVERRIDE_FAMILY_8000);
/* The byte order is little endian 16 bit, meaning 214365 */
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
if (is_valid_ether_addr(data->hw_addr))
return;
IWL_ERR_DEV(dev,
"mac address from nvm override section is not valid\n");
}
if (nvm_hw) {
/* read the MAC address from OTP */
if (!dev_is_pci(dev) || (data->nvm_version < 0xE08)) {
/* read the mac address from the WFPM location */
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR0_WFPM_FAMILY_8000);
data->hw_addr[0] = hw_addr[3];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[2] = hw_addr[1];
data->hw_addr[3] = hw_addr[0];
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR1_WFPM_FAMILY_8000);
data->hw_addr[4] = hw_addr[1];
data->hw_addr[5] = hw_addr[0];
} else if ((data->nvm_version >= 0xE08) &&
(data->nvm_version < 0xE0B)) {
/* read "reverse order" from the PCIe location */
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR0_PCIE_FAMILY_8000);
data->hw_addr[5] = hw_addr[2];
data->hw_addr[4] = hw_addr[1];
data->hw_addr[3] = hw_addr[0];
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR1_PCIE_FAMILY_8000);
data->hw_addr[2] = hw_addr[3];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[0] = hw_addr[1];
} else {
/* read from the PCIe location */
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR0_PCIE_FAMILY_8000);
data->hw_addr[5] = hw_addr[0];
data->hw_addr[4] = hw_addr[1];
data->hw_addr[3] = hw_addr[2];
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR1_PCIE_FAMILY_8000);
data->hw_addr[2] = hw_addr[1];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[0] = hw_addr[3];
}
return;
}
IWL_ERR_DEV(dev, "mac address is not found\n");
}
struct iwl_nvm_data *
iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
const __le16 *nvm_hw, const __le16 *nvm_sw,
const __le16 *nvm_calib, const __le16 *regulatory,
const __le16 *mac_override, u8 tx_chains, u8 rx_chains)
{
struct iwl_nvm_data *data;
u32 sku;
u32 radio_cfg;
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
data = kzalloc(sizeof(*data) +
sizeof(struct ieee80211_channel) *
IWL_NUM_CHANNELS,
GFP_KERNEL);
else
data = kzalloc(sizeof(*data) +
sizeof(struct ieee80211_channel) *
IWL_NUM_CHANNELS_FAMILY_8000,
GFP_KERNEL);
if (!data)
return NULL;
data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw);
iwl_set_radio_cfg(cfg, data, radio_cfg);
sku = iwl_get_sku(cfg, nvm_sw);
data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
data->sku_cap_11ac_enable = sku & NVM_SKU_CAP_11AC_ENABLE;
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
data->sku_cap_11n_enable = false;
data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
/* Checking for required sections */
if (!nvm_calib) {
IWL_ERR_DEV(dev,
"Can't parse empty Calib NVM sections\n");
kfree(data);
return NULL;
}
/* in family 8000 Xtal calibration values moved to OTP */
data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
}
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
iwl_set_hw_address(cfg, data, nvm_hw);
iwl_init_sbands(dev, cfg, data, nvm_sw,
sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
rx_chains);
} else {
/* MAC address in family 8000 */
iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
nvm_hw);
iwl_init_sbands(dev, cfg, data, regulatory,
sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
rx_chains);
}
data->calib_version = 255;
return data;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
|