1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
*/
#include "sja1105.h"
#define SJA1105_TAS_CLKSRC_DISABLED 0
#define SJA1105_TAS_CLKSRC_STANDALONE 1
#define SJA1105_TAS_CLKSRC_AS6802 2
#define SJA1105_TAS_CLKSRC_PTP 3
#define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
#define work_to_sja1105_tas(d) \
container_of((d), struct sja1105_tas_data, tas_work)
#define tas_to_sja1105(d) \
container_of((d), struct sja1105_private, tas_data)
static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
struct dsa_switch *ds = priv->ds;
s64 earliest_base_time = S64_MAX;
s64 latest_base_time = 0;
s64 its_cycle_time = 0;
s64 max_cycle_time = 0;
int port;
tas_data->enabled = false;
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
const struct tc_taprio_qopt_offload *offload;
offload = tas_data->offload[port];
if (!offload)
continue;
tas_data->enabled = true;
if (max_cycle_time < offload->cycle_time)
max_cycle_time = offload->cycle_time;
if (latest_base_time < offload->base_time)
latest_base_time = offload->base_time;
if (earliest_base_time > offload->base_time) {
earliest_base_time = offload->base_time;
its_cycle_time = offload->cycle_time;
}
}
if (!list_empty(&gating_cfg->entries)) {
tas_data->enabled = true;
if (max_cycle_time < gating_cfg->cycle_time)
max_cycle_time = gating_cfg->cycle_time;
if (latest_base_time < gating_cfg->base_time)
latest_base_time = gating_cfg->base_time;
if (earliest_base_time > gating_cfg->base_time) {
earliest_base_time = gating_cfg->base_time;
its_cycle_time = gating_cfg->cycle_time;
}
}
if (!tas_data->enabled)
return 0;
/* Roll the earliest base time over until it is in a comparable
* time base with the latest, then compare their deltas.
* We want to enforce that all ports' base times are within
* SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
*/
earliest_base_time = future_base_time(earliest_base_time,
its_cycle_time,
latest_base_time);
while (earliest_base_time > latest_base_time)
earliest_base_time -= its_cycle_time;
if (latest_base_time - earliest_base_time >
sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
dev_err(ds->dev,
"Base times too far apart: min %llu max %llu\n",
earliest_base_time, latest_base_time);
return -ERANGE;
}
tas_data->earliest_base_time = earliest_base_time;
tas_data->max_cycle_time = max_cycle_time;
dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
return 0;
}
/* Lo and behold: the egress scheduler from hell.
*
* At the hardware level, the Time-Aware Shaper holds a global linear arrray of
* all schedule entries for all ports. These are the Gate Control List (GCL)
* entries, let's call them "timeslots" for short. This linear array of
* timeslots is held in BLK_IDX_SCHEDULE.
*
* Then there are a maximum of 8 "execution threads" inside the switch, which
* iterate cyclically through the "schedule". Each "cycle" has an entry point
* and an exit point, both being timeslot indices in the schedule table. The
* hardware calls each cycle a "subschedule".
*
* Subschedule (cycle) i starts when
* ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
*
* The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
* k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
* k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
*
* For each schedule entry (timeslot) k, the engine executes the gate control
* list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
*
* +---------+
* | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
* +---------+
* |
* +-----------------+
* | .actsubsch
* BLK_IDX_SCHEDULE_ENTRY_POINTS v
* +-------+-------+
* |cycle 0|cycle 1|
* +-------+-------+
* | | | |
* +----------------+ | | +-------------------------------------+
* | .subschindx | | .subschindx |
* | | +---------------+ |
* | .address | .address | |
* | | | |
* | | | |
* | BLK_IDX_SCHEDULE v v |
* | +-------+-------+-------+-------+-------+------+ |
* | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| |
* | +-------+-------+-------+-------+-------+------+ |
* | ^ ^ ^ ^ |
* | | | | | |
* | +-------------------------+ | | | |
* | | +-------------------------------+ | | |
* | | | +-------------------+ | |
* | | | | | |
* | +---------------------------------------------------------------+ |
* | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
* | +---------------------------------------------------------------+ |
* | ^ ^ BLK_IDX_SCHEDULE_PARAMS |
* | | | |
* +--------+ +-------------------------------------------+
*
* In the above picture there are two subschedules (cycles):
*
* - cycle 0: iterates the schedule table from 0 to 2 (and back)
* - cycle 1: iterates the schedule table from 3 to 5 (and back)
*
* All other possible execution threads must be marked as unused by making
* their "subschedule end index" (subscheind) equal to the last valid
* subschedule's end index (in this case 5).
*/
int sja1105_init_scheduling(struct sja1105_private *priv)
{
struct sja1105_schedule_entry_points_entry *schedule_entry_points;
struct sja1105_schedule_entry_points_params_entry
*schedule_entry_points_params;
struct sja1105_schedule_params_entry *schedule_params;
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
struct sja1105_schedule_entry *schedule;
struct sja1105_table *table;
int schedule_start_idx;
s64 entry_point_delta;
int schedule_end_idx;
int num_entries = 0;
int num_cycles = 0;
int cycle = 0;
int i, k = 0;
int port, rc;
rc = sja1105_tas_set_runtime_params(priv);
if (rc < 0)
return rc;
/* Discard previous Schedule Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Discard previous Schedule Entry Points Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Discard previous Schedule Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Discard previous Schedule Entry Points Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Figure out the dimensioning of the problem */
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
if (tas_data->offload[port]) {
num_entries += tas_data->offload[port]->num_entries;
num_cycles++;
}
}
if (!list_empty(&gating_cfg->entries)) {
num_entries += gating_cfg->num_entries;
num_cycles++;
}
/* Nothing to do */
if (!num_cycles)
return 0;
/* Pre-allocate space in the static config tables */
/* Schedule Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = num_entries;
schedule = table->entries;
/* Schedule Points Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
/* Previously allocated memory will be freed automatically in
* sja1105_static_config_free. This is true for all early
* returns below.
*/
return -ENOMEM;
table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
schedule_entry_points_params = table->entries;
/* Schedule Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
schedule_params = table->entries;
/* Schedule Entry Points Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = num_cycles;
schedule_entry_points = table->entries;
/* Finally start populating the static config tables */
schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
schedule_entry_points_params->actsubsch = num_cycles - 1;
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
const struct tc_taprio_qopt_offload *offload;
/* Relative base time */
s64 rbt;
offload = tas_data->offload[port];
if (!offload)
continue;
schedule_start_idx = k;
schedule_end_idx = k + offload->num_entries - 1;
/* This is the base time expressed as a number of TAS ticks
* relative to PTPSCHTM, which we'll (perhaps improperly) call
* the operational base time.
*/
rbt = future_base_time(offload->base_time,
offload->cycle_time,
tas_data->earliest_base_time);
rbt -= tas_data->earliest_base_time;
/* UM10944.pdf 4.2.2. Schedule Entry Points table says that
* delta cannot be zero, which is shitty. Advance all relative
* base times by 1 TAS delta, so that even the earliest base
* time becomes 1 in relative terms. Then start the operational
* base time (PTPSCHTM) one TAS delta earlier than planned.
*/
entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
schedule_entry_points[cycle].subschindx = cycle;
schedule_entry_points[cycle].delta = entry_point_delta;
schedule_entry_points[cycle].address = schedule_start_idx;
/* The subschedule end indices need to be
* monotonically increasing.
*/
for (i = cycle; i < 8; i++)
schedule_params->subscheind[i] = schedule_end_idx;
for (i = 0; i < offload->num_entries; i++, k++) {
s64 delta_ns = offload->entries[i].interval;
schedule[k].delta = ns_to_sja1105_delta(delta_ns);
schedule[k].destports = BIT(port);
schedule[k].resmedia_en = true;
schedule[k].resmedia = SJA1105_GATE_MASK &
~offload->entries[i].gate_mask;
}
cycle++;
}
if (!list_empty(&gating_cfg->entries)) {
struct sja1105_gate_entry *e;
/* Relative base time */
s64 rbt;
schedule_start_idx = k;
schedule_end_idx = k + gating_cfg->num_entries - 1;
rbt = future_base_time(gating_cfg->base_time,
gating_cfg->cycle_time,
tas_data->earliest_base_time);
rbt -= tas_data->earliest_base_time;
entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
schedule_entry_points[cycle].subschindx = cycle;
schedule_entry_points[cycle].delta = entry_point_delta;
schedule_entry_points[cycle].address = schedule_start_idx;
for (i = cycle; i < 8; i++)
schedule_params->subscheind[i] = schedule_end_idx;
list_for_each_entry(e, &gating_cfg->entries, list) {
schedule[k].delta = ns_to_sja1105_delta(e->interval);
schedule[k].destports = e->rule->vl.destports;
schedule[k].setvalid = true;
schedule[k].txen = true;
schedule[k].vlindex = e->rule->vl.sharindx;
schedule[k].winstindex = e->rule->vl.sharindx;
if (e->gate_state) /* Gate open */
schedule[k].winst = true;
else /* Gate closed */
schedule[k].winend = true;
k++;
}
}
return 0;
}
/* Be there 2 port subschedules, each executing an arbitrary number of gate
* open/close events cyclically.
* None of those gate events must ever occur at the exact same time, otherwise
* the switch is known to act in exotically strange ways.
* However the hardware doesn't bother performing these integrity checks.
* So here we are with the task of validating whether the new @admin offload
* has any conflict with the already established TAS configuration in
* tas_data->offload. We already know the other ports are in harmony with one
* another, otherwise we wouldn't have saved them.
* Each gate event executes periodically, with a period of @cycle_time and a
* phase given by its cycle's @base_time plus its offset within the cycle
* (which in turn is given by the length of the events prior to it).
* There are two aspects to possible collisions:
* - Collisions within one cycle's (actually the longest cycle's) time frame.
* For that, we need to compare the cartesian product of each possible
* occurrence of each event within one cycle time.
* - Collisions in the future. Events may not collide within one cycle time,
* but if two port schedules don't have the same periodicity (aka the cycle
* times aren't multiples of one another), they surely will some time in the
* future (actually they will collide an infinite amount of times).
*/
static bool
sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
const struct tc_taprio_qopt_offload *admin)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
const struct tc_taprio_qopt_offload *offload;
s64 max_cycle_time, min_cycle_time;
s64 delta1, delta2;
s64 rbt1, rbt2;
s64 stop_time;
s64 t1, t2;
int i, j;
s32 rem;
offload = tas_data->offload[port];
if (!offload)
return false;
/* Check if the two cycle times are multiples of one another.
* If they aren't, then they will surely collide.
*/
max_cycle_time = max(offload->cycle_time, admin->cycle_time);
min_cycle_time = min(offload->cycle_time, admin->cycle_time);
div_s64_rem(max_cycle_time, min_cycle_time, &rem);
if (rem)
return true;
/* Calculate the "reduced" base time of each of the two cycles
* (transposed back as close to 0 as possible) by dividing to
* the cycle time.
*/
div_s64_rem(offload->base_time, offload->cycle_time, &rem);
rbt1 = rem;
div_s64_rem(admin->base_time, admin->cycle_time, &rem);
rbt2 = rem;
stop_time = max_cycle_time + max(rbt1, rbt2);
/* delta1 is the relative base time of each GCL entry within
* the established ports' TAS config.
*/
for (i = 0, delta1 = 0;
i < offload->num_entries;
delta1 += offload->entries[i].interval, i++) {
/* delta2 is the relative base time of each GCL entry
* within the newly added TAS config.
*/
for (j = 0, delta2 = 0;
j < admin->num_entries;
delta2 += admin->entries[j].interval, j++) {
/* t1 follows all possible occurrences of the
* established ports' GCL entry i within the
* first cycle time.
*/
for (t1 = rbt1 + delta1;
t1 <= stop_time;
t1 += offload->cycle_time) {
/* t2 follows all possible occurrences
* of the newly added GCL entry j
* within the first cycle time.
*/
for (t2 = rbt2 + delta2;
t2 <= stop_time;
t2 += admin->cycle_time) {
if (t1 == t2) {
dev_warn(priv->ds->dev,
"GCL entry %d collides with entry %d of port %d\n",
j, i, port);
return true;
}
}
}
}
}
return false;
}
/* Check the tc-taprio configuration on @port for conflicts with the tc-gate
* global subschedule. If @port is -1, check it against all ports.
* To reuse the sja1105_tas_check_conflicts logic without refactoring it,
* convert the gating configuration to a dummy tc-taprio offload structure.
*/
bool sja1105_gating_check_conflicts(struct sja1105_private *priv, int port,
struct netlink_ext_ack *extack)
{
struct sja1105_gating_config *gating_cfg = &priv->tas_data.gating_cfg;
size_t num_entries = gating_cfg->num_entries;
struct tc_taprio_qopt_offload *dummy;
struct sja1105_gate_entry *e;
bool conflict;
int i = 0;
if (list_empty(&gating_cfg->entries))
return false;
dummy = kzalloc(struct_size(dummy, entries, num_entries), GFP_KERNEL);
if (!dummy) {
NL_SET_ERR_MSG_MOD(extack, "Failed to allocate memory");
return true;
}
dummy->num_entries = num_entries;
dummy->base_time = gating_cfg->base_time;
dummy->cycle_time = gating_cfg->cycle_time;
list_for_each_entry(e, &gating_cfg->entries, list)
dummy->entries[i++].interval = e->interval;
if (port != -1) {
conflict = sja1105_tas_check_conflicts(priv, port, dummy);
} else {
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
conflict = sja1105_tas_check_conflicts(priv, port,
dummy);
if (conflict)
break;
}
}
kfree(dummy);
return conflict;
}
int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
struct tc_taprio_qopt_offload *admin)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
int other_port, rc, i;
/* Can't change an already configured port (must delete qdisc first).
* Can't delete the qdisc from an unconfigured port.
*/
if (!!tas_data->offload[port] == admin->enable)
return -EINVAL;
if (!admin->enable) {
taprio_offload_free(tas_data->offload[port]);
tas_data->offload[port] = NULL;
rc = sja1105_init_scheduling(priv);
if (rc < 0)
return rc;
return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
}
/* The cycle time extension is the amount of time the last cycle from
* the old OPER needs to be extended in order to phase-align with the
* base time of the ADMIN when that becomes the new OPER.
* But of course our switch needs to be reset to switch-over between
* the ADMIN and the OPER configs - so much for a seamless transition.
* So don't add insult over injury and just say we don't support cycle
* time extension.
*/
if (admin->cycle_time_extension)
return -ENOTSUPP;
for (i = 0; i < admin->num_entries; i++) {
s64 delta_ns = admin->entries[i].interval;
s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
bool too_long, too_short;
too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
too_short = (delta_cycles == 0);
if (too_long || too_short) {
dev_err(priv->ds->dev,
"Interval %llu too %s for GCL entry %d\n",
delta_ns, too_long ? "long" : "short", i);
return -ERANGE;
}
}
for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) {
if (other_port == port)
continue;
if (sja1105_tas_check_conflicts(priv, other_port, admin))
return -ERANGE;
}
if (sja1105_gating_check_conflicts(priv, port, NULL)) {
dev_err(ds->dev, "Conflict with tc-gate schedule\n");
return -ERANGE;
}
tas_data->offload[port] = taprio_offload_get(admin);
rc = sja1105_init_scheduling(priv);
if (rc < 0)
return rc;
return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
}
static int sja1105_tas_check_running(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct dsa_switch *ds = priv->ds;
struct sja1105_ptp_cmd cmd = {0};
int rc;
rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
if (rc < 0)
return rc;
if (cmd.ptpstrtsch == 1)
/* Schedule successfully started */
tas_data->state = SJA1105_TAS_STATE_RUNNING;
else if (cmd.ptpstopsch == 1)
/* Schedule is stopped */
tas_data->state = SJA1105_TAS_STATE_DISABLED;
else
/* Schedule is probably not configured with PTP clock source */
rc = -EINVAL;
return rc;
}
/* Write to PTPCLKCORP */
static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
u64 correction)
{
const struct sja1105_regs *regs = priv->info->regs;
u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
&ptpclkcorp, NULL);
}
/* Write to PTPSCHTM */
static int sja1105_tas_set_base_time(struct sja1105_private *priv,
u64 base_time)
{
const struct sja1105_regs *regs = priv->info->regs;
u64 ptpschtm = ns_to_sja1105_ticks(base_time);
return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
&ptpschtm, NULL);
}
static int sja1105_tas_start(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
struct dsa_switch *ds = priv->ds;
int rc;
dev_dbg(ds->dev, "Starting the TAS\n");
if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
tas_data->state == SJA1105_TAS_STATE_RUNNING) {
dev_err(ds->dev, "TAS already started\n");
return -EINVAL;
}
cmd->ptpstrtsch = 1;
cmd->ptpstopsch = 0;
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
if (rc < 0)
return rc;
tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
return 0;
}
static int sja1105_tas_stop(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
struct dsa_switch *ds = priv->ds;
int rc;
dev_dbg(ds->dev, "Stopping the TAS\n");
if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
dev_err(ds->dev, "TAS already disabled\n");
return -EINVAL;
}
cmd->ptpstopsch = 1;
cmd->ptpstrtsch = 0;
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
if (rc < 0)
return rc;
tas_data->state = SJA1105_TAS_STATE_DISABLED;
return 0;
}
/* The schedule engine and the PTP clock are driven by the same oscillator, and
* they run in parallel. But whilst the PTP clock can keep an absolute
* time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
* up a delta, which is 200ns), and wrapping around at the end of each cycle.
* The schedule engine is started when the PTP clock reaches the PTPSCHTM time
* (in PTP domain).
* Because the PTP clock can be rate-corrected (accelerated or slowed down) by
* a software servo, and the schedule engine clock runs in parallel to the PTP
* clock, there is logic internal to the switch that periodically keeps the
* schedule engine from drifting away. The frequency with which this internal
* syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
* a value also in the PTP clock domain, and is also rate-corrected.
* To be precise, during a correction period, there is logic to determine by
* how many scheduler clock ticks has the PTP clock drifted. At the end of each
* correction period/beginning of new one, the length of a delta is shrunk or
* expanded with an integer number of ticks, compared with the typical 25.
* So a delta lasts for 200ns (or 25 ticks) only on average.
* Sometimes it is longer, sometimes it is shorter. The internal syntonization
* logic can adjust for at most 5 ticks each 20 ticks.
*
* The first implication is that you should choose your schedule correction
* period to be an integer multiple of the schedule length. Preferably one.
* In case there are schedules of multiple ports active, then the correction
* period needs to be a multiple of them all. Given the restriction that the
* cycle times have to be multiples of one another anyway, this means the
* correction period can simply be the largest cycle time, hence the current
* choice. This way, the updates are always synchronous to the transmission
* cycle, and therefore predictable.
*
* The second implication is that at the beginning of a correction period, the
* first few deltas will be modulated in time, until the schedule engine is
* properly phase-aligned with the PTP clock. For this reason, you should place
* your best-effort traffic at the beginning of a cycle, and your
* time-triggered traffic afterwards.
*
* The third implication is that once the schedule engine is started, it can
* only adjust for so much drift within a correction period. In the servo you
* can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
* want to do the latter, you need to stop and restart the schedule engine,
* which is what the state machine handles.
*/
static void sja1105_tas_state_machine(struct work_struct *work)
{
struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
struct sja1105_private *priv = tas_to_sja1105(tas_data);
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
struct timespec64 base_time_ts, now_ts;
struct dsa_switch *ds = priv->ds;
struct timespec64 diff;
s64 base_time, now;
int rc = 0;
mutex_lock(&ptp_data->lock);
switch (tas_data->state) {
case SJA1105_TAS_STATE_DISABLED:
/* Can't do anything at all if clock is still being stepped */
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
break;
rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
if (rc < 0)
break;
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
if (rc < 0)
break;
/* Plan to start the earliest schedule first. The others
* will be started in hardware, by way of their respective
* entry points delta.
* Try our best to avoid fringe cases (race condition between
* ptpschtm and ptpstrtsch) by pushing the oper_base_time at
* least one second in the future from now. This is not ideal,
* but this only needs to buy us time until the
* sja1105_tas_start command below gets executed.
*/
base_time = future_base_time(tas_data->earliest_base_time,
tas_data->max_cycle_time,
now + 1ull * NSEC_PER_SEC);
base_time -= sja1105_delta_to_ns(1);
rc = sja1105_tas_set_base_time(priv, base_time);
if (rc < 0)
break;
tas_data->oper_base_time = base_time;
rc = sja1105_tas_start(priv);
if (rc < 0)
break;
base_time_ts = ns_to_timespec64(base_time);
now_ts = ns_to_timespec64(now);
dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
base_time_ts.tv_sec, base_time_ts.tv_nsec,
now_ts.tv_sec, now_ts.tv_nsec);
break;
case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
/* Clock was stepped.. bad news for TAS */
sja1105_tas_stop(priv);
break;
}
/* Check if TAS has actually started, by comparing the
* scheduled start time with the SJA1105 PTP clock
*/
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
if (rc < 0)
break;
if (now < tas_data->oper_base_time) {
/* TAS has not started yet */
diff = ns_to_timespec64(tas_data->oper_base_time - now);
dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
diff.tv_sec, diff.tv_nsec);
break;
}
/* Time elapsed, what happened? */
rc = sja1105_tas_check_running(priv);
if (rc < 0)
break;
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
/* TAS has started */
dev_err(ds->dev,
"TAS not started despite time elapsed\n");
break;
case SJA1105_TAS_STATE_RUNNING:
/* Clock was stepped.. bad news for TAS */
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
sja1105_tas_stop(priv);
break;
}
rc = sja1105_tas_check_running(priv);
if (rc < 0)
break;
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
dev_err(ds->dev, "TAS surprisingly stopped\n");
break;
default:
if (net_ratelimit())
dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
}
if (rc && net_ratelimit())
dev_err(ds->dev, "An operation returned %d\n", rc);
mutex_unlock(&ptp_data->lock);
}
void sja1105_tas_clockstep(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
if (!tas_data->enabled)
return;
tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
schedule_work(&tas_data->tas_work);
}
void sja1105_tas_adjfreq(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
if (!tas_data->enabled)
return;
/* No reason to schedule the workqueue, nothing changed */
if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
return;
tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
schedule_work(&tas_data->tas_work);
}
void sja1105_tas_setup(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
tas_data->state = SJA1105_TAS_STATE_DISABLED;
tas_data->last_op = SJA1105_PTP_NONE;
INIT_LIST_HEAD(&tas_data->gating_cfg.entries);
}
void sja1105_tas_teardown(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct tc_taprio_qopt_offload *offload;
int port;
cancel_work_sync(&priv->tas_data.tas_work);
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
offload = priv->tas_data.offload[port];
if (!offload)
continue;
taprio_offload_free(offload);
}
}
|