summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/denali.c
blob: 09f51395f2c0a79122e02737f0678e7108ce4673 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

/*
 * We define a module parameter that allows the user to override
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");

#define DENALI_NAND_NAME    "denali-nand"

/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)

/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
#define CHIP_SELECT_INVALID	-1

#define SUPPORT_8BITECC		1

/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/*
 * this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
#define PIPELINE_ACCESS		0x2000

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
 * abstracts this common operation.
 */
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
{
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
	iowrite32(address, denali->flash_mem);
	*pdata = ioread32(denali->flash_mem + 0x10);
}

/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd;

	/* initialize the data buffer to store status */
	reset_buf(denali);

	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status;
	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;

	clear_interrupts(denali);

	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);

	irq_status = wait_for_irq(denali, irq_mask);

	if (irq_status & INTR_STATUS__TIME_OUT)
		dev_err(denali->dev, "reset bank failed.\n");
}

/* Reset the flash controller */
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{
	int i;

	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
		__FILE__, __LINE__, __func__);

	for (i = 0; i < denali->max_banks; i++)
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));

	for (i = 0; i < denali->max_banks; i++) {
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
			cpu_relax();
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
			dev_dbg(denali->dev,
			"NAND Reset operation timed out on bank %d\n", i);
	}

	for (i = 0; i < denali->max_banks; i++)
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
			  denali->flash_reg + INTR_STATUS(i));

	return PASS;
}

/*
 * this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
 */
static void nand_onfi_timing_set(struct denali_nand_info *denali,
								uint16_t mode)
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
		__FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (acc_clks * CLK_X - Trea[mode] < 3)
		acc_clks++;

	if (data_invalid - acc_clks * CLK_X < 2)
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
			 __FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
		acc_clks = 6;

	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;

	/*
	 * we needn't to do a reset here because driver has already
	 * reset all the banks before
	 */
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
			break;
	}

	nand_onfi_timing_set(denali, i);

	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
{
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
		/* Set timing register values according to datasheet */
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		iowrite32(tmp,
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif
	}
}

static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
{
	uint32_t main_size, spare_size;

	switch (device_id) {
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		iowrite32(main_size,
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
		iowrite32(spare_size,
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif
		break;
	default:
		dev_warn(denali->dev,
			 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
			 "Will use default parameter values instead.\n",
			 device_id);
	}
}

/*
 * determines how many NAND chips are connected to the controller. Note for
 * Intel CE4100 devices we don't support more than one device.
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[denali->max_banks];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < denali->max_banks; i++) {
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);

		dev_dbg(denali->dev,
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

	if (denali->platform == INTEL_CE4100) {
		/*
		 * Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
		 * Multichip support is not enabled.
		 */
		if (denali->total_used_banks != 1) {
			dev_err(denali->dev,
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
			BUG();
		}
	}
	dev_dbg(denali->dev,
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
	/*
	 * For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 */
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
			denali->fwblks =
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
			     denali->blksperchip)
			    +
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
		} else {
			denali->fwblks = SPECTRA_START_BLOCK;
		}
	} else {
		denali->fwblks = SPECTRA_START_BLOCK;
	}
}

static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
{
	uint16_t status = PASS;
	uint32_t id_bytes[8], addr;
	uint8_t maf_id, device_id;
	int i;

	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);

	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
	for (i = 0; i < 8; i++)
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
	} else if (maf_id == 0xEC) { /* Samsung NAND */
		get_samsung_nand_para(denali, device_id);
	} else if (maf_id == 0x98) { /* Toshiba NAND */
		get_toshiba_nand_para(denali);
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
	}

	dev_info(denali->dev,
			"Dump timing register values:\n"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + RE_2_RE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/*
	 * If the user specified to override the default timings
	 * with a specific ONFI mode, we apply those changes here.
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
		nand_onfi_timing_set(denali, onfi_timing_mode);

	return status;
}

static void denali_set_intr_modes(struct denali_nand_info *denali,
					uint16_t INT_ENABLE)
{
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
		__FILE__, __LINE__, __func__);

	if (INT_ENABLE)
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
	else
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}

/*
 * validation function to verify that the controlling software is making
 * a valid request
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
	return flash_bank >= 0 && flash_bank < 4;
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask;
	int i;

	/* Disable global interrupts */
	denali_set_intr_modes(denali, false);

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
	for (i = 0; i < denali->max_banks; ++i)
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
	denali_set_intr_modes(denali, false);
	free_irq(irqnum, denali);
}

static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
{
	int i;

	for (i = 0; i < denali->max_banks; ++i)
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
}

/*
 * This function only returns when an interrupt that this driver cares about
 * occurs. This is to reduce the overhead of servicing interrupts
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
{
	uint32_t intr_status_reg;

	intr_status_reg = INTR_STATUS(denali->flash_bank);

	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status;

	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
	clear_interrupt(denali, status);

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg;

	intr_status_reg = INTR_STATUS(denali->flash_bank);

	return ioread32(denali->flash_reg + intr_status_reg);
}

/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

	/* check to see if a valid NAND chip has been selected. */
	if (is_flash_bank_valid(denali->flash_bank)) {
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/*
			 * store the status in the device context for someone
			 * to read
			 */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res;
	uint32_t intr_status;
	unsigned long timeout = msecs_to_jiffies(1000);

	do {
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

		if (intr_status & irq_mask) {
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
	} while (comp_res != 0);

	if (comp_res == 0) {
		/* timeout */
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);

		intr_status = 0;
	}
	return intr_status;
}

/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
				bool transfer_spare)
{
	int ecc_en_flag, transfer_spare_flag;

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
}

/*
 * sends a pipeline command operation to the controller. See the Denali NAND
 * controller's user guide for more information (section 4.2.3.6).
 */
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
{
	int status = PASS;
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;

	if (op == DENALI_READ)
		irq_mask = INTR_STATUS__LOAD_COMP;
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

	clear_interrupts(denali);

	addr = BANK(denali->flash_bank) | denali->page;

	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
		cmd = MODE_01 | addr;
		iowrite32(cmd, denali->flash_mem);
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
		/* read spare area */
		cmd = MODE_10 | addr;
		index_addr(denali, cmd, access_type);

		cmd = MODE_01 | addr;
		iowrite32(cmd, denali->flash_mem);
	} else if (op == DENALI_READ) {
		/* setup page read request for access type */
		cmd = MODE_10 | addr;
		index_addr(denali, cmd, access_type);

		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
		 */
		if (access_type == SPARE_ACCESS) {
			cmd = MODE_01 | addr;
			iowrite32(cmd, denali->flash_mem);
		} else {
			index_addr(denali, cmd,
					PIPELINE_ACCESS | op | page_count);

			/*
			 * wait for command to be accepted
			 * can always use status0 bit as the
			 * mask is identical for each bank.
			 */
			irq_status = wait_for_irq(denali, irq_mask);

			if (irq_status == 0) {
				dev_err(denali->dev,
					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
					cmd, denali->page, addr);
				status = FAIL;
			} else {
				cmd = MODE_01 | addr;
				iowrite32(cmd, denali->flash_mem);
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali,
				   const uint8_t *buf, int len)
{
	uint32_t *buf32;
	int i;

	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		iowrite32(*buf32++, denali->flash_mem + 0x10);
	return i * 4; /* intent is to return the number of bytes read */
}

/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali,
				    uint8_t *buf, int len)
{
	uint32_t *buf32;
	int i;

	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
	return i * 4; /* intent is to return the number of bytes read */
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status;
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
							DENALI_WRITE) == PASS) {
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0) {
			dev_err(denali->dev, "OOB write failed\n");
			status = -EIO;
		}
	} else {
		dev_err(denali->dev, "unable to send pipeline command\n");
		status = -EIO;
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
	uint32_t irq_status, addr, cmd;

	denali->page = page;

	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
							DENALI_READ) == PASS) {
		read_data_from_flash_mem(denali, buf, mtd->oobsize);

		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
			dev_err(denali->dev, "page on OOB timeout %d\n",
					denali->page);

		/*
		 * We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
		 * if you are in MAIN_ACCESS.
		 */
		addr = BANK(denali->flash_bank) | denali->page;
		cmd = MODE_10 | addr;
		index_addr(denali, cmd, MAIN_ACCESS);
	}
}

/*
 * this function examines buffers to see if they contain data that
 * indicate that the buffer is part of an erased region of flash.
 */
static bool is_erased(uint8_t *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
		       uint32_t irq_status, unsigned int *max_bitflips)
{
	bool check_erased_page = false;
	unsigned int bitflips = 0;

	if (irq_status & INTR_STATUS__ECC_ERR) {
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
		denali_set_intr_modes(denali, false);

		do {
			err_address = ioread32(denali->flash_reg +
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

			err_correction_info = ioread32(denali->flash_reg +
						ERR_CORRECTION_INFO);
			err_correction_value =
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
				 * means error happened in OOB, so we ignore
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
				 */
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;

					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
					bitflips++;
				}
			} else {
				/*
				 * if the error is not correctable, need to
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 */
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
		/*
		 * Once handle all ecc errors, controller will triger
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
		 */
		while (!(read_interrupt_status(denali) &
				INTR_STATUS__ECC_TRANSACTION_DONE))
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
	}
	*max_bitflips = bitflips;
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
	uint32_t mode;
	const int page_count = 1;
	uint32_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);

	/* 4. interrupt when complete, burst len = 64 bytes */
	index_addr(denali, mode | 0x14000, 0x2400);
}

/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
	uint32_t irq_status;
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;

	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

	if (raw_xfer) {
		/* transfer the data to the spare area */
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
	}

	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);

	clear_interrupts(denali);
	denali_enable_dma(denali, true);

	denali_setup_dma(denali, DENALI_WRITE);

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	if (irq_status == 0) {
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
		denali->status = NAND_STATUS_FAIL;
	}

	denali_enable_dma(denali, false);
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);

	return 0;
}

/* NAND core entry points */

/*
 * this is the callback that the NAND core calls to write a page. Since
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
 */
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int oob_required)
{
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
	return write_page(mtd, chip, buf, false);
}

/*
 * This is the callback that the NAND core calls to write a page without ECC.
 * raw access is similar to ECC page writes, so all the work is done in the
 * write_page() function above.
 */
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
					const uint8_t *buf, int oob_required)
{
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
	return write_page(mtd, chip, buf, true);
}

static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
{
	return write_oob_data(mtd, chip->oob_poi, page);
}

static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			   int page)
{
	read_oob_data(mtd, chip->oob_poi, page);

	return 0;
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int oob_required, int page)
{
	unsigned int max_bitflips;
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status;
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
	bool check_erased_page = false;

	if (page != denali->page) {
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
		BUG();
	}

	setup_ecc_for_xfer(denali, true, false);

	denali_enable_dma(denali, true);
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);

	clear_interrupts(denali);
	denali_setup_dma(denali, DENALI_READ);

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);

	memcpy(buf, denali->buf.buf, mtd->writesize);

	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
	denali_enable_dma(denali, false);

	if (check_erased_page) {
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
		if (check_erased_page) {
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
		}
	}
	return max_bitflips;
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;

	if (page != denali->page) {
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
		BUG();
	}

	setup_ecc_for_xfer(denali, false, true);
	denali_enable_dma(denali, true);

	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);

	clear_interrupts(denali);
	denali_setup_dma(denali, DENALI_READ);

	/* wait for operation to complete */
	wait_for_irq(denali, irq_mask);

	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);

	denali_enable_dma(denali, false);

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;

	denali->status = 0;

	return status;
}

static int denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd, irq_status;

	clear_interrupts(denali);

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, cmd, 0x1);

	/* wait for erase to complete or failure to occur */
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);

	return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
}

static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t addr, id;
	int i;

	switch (cmd) {
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
	case NAND_CMD_PARAM:
		reset_buf(denali);
		/*
		 * sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 */
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
		index_addr(denali, addr | 1, 0);
		for (i = 0; i < 8; i++) {
			index_addr_read_data(denali, addr | 2, &id);
			write_byte_to_buf(denali, id);
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
		pr_err(": unsupported command received 0x%x\n", cmd);
		break;
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
	/*
	 * tell driver how many bit controller will skip before
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
	 */
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
	detect_max_banks(denali);
	denali_nand_reset(denali);
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);

	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);

	/* Should set value for these registers when init */
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
}

/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
 */
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
};

#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

/* initialize driver data structures */
static void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
	init_completion(&denali->complete);

	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

int denali_init(struct denali_nand_info *denali)
{
	int ret;

	if (denali->platform == INTEL_CE4100) {
		/*
		 * Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
		}
	}

	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;

	denali->mtd.dev.parent = denali->dev;
	denali_hw_init(denali);
	denali_drv_init(denali);

	/*
	 * denali_isr register is done after all the hardware
	 * initilization is finished
	 */
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
	}

	/* now that our ISR is registered, we can enable interrupts */
	denali_set_intr_modes(denali, true);
	denali->mtd.name = "denali-nand";
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

	/*
	 * scan for NAND devices attached to the controller
	 * this is the first stage in a two step process to register
	 * with the nand subsystem
	 */
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
		ret = -ENXIO;
		goto failed_req_irq;
	}

	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
		goto failed_req_irq;
	}

	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

	/*
	 * second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management.
	 */

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
	denali->nand.options |= NAND_SKIP_BBTSCAN;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
	if (!nand_is_slc(&denali->nand) &&
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
		denali->nand.ecc.strength = 15;
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
		goto failed_req_irq;
	} else {
		denali->nand.ecc.strength = 8;
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
	}

	denali->nand.ecc.bytes *= denali->devnum;
	denali->nand.ecc.strength *= denali->devnum;
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

	/*
	 * Let driver know the total blocks number and how many blocks
	 * contained by each nand chip. blksperchip will help driver to
	 * know how many blocks is taken by FW.
	 */
	denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

	/* override the default read operations */
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase = denali_erase;

	if (nand_scan_tail(&denali->mtd)) {
		ret = -ENXIO;
		goto failed_req_irq;
	}

	ret = mtd_device_register(&denali->mtd, NULL, 0);
	if (ret) {
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
				ret);
		goto failed_req_irq;
	}
	return 0;

failed_req_irq:
	denali_irq_cleanup(denali->irq, denali);

	return ret;
}
EXPORT_SYMBOL(denali_init);

/* driver exit point */
void denali_remove(struct denali_nand_info *denali)
{
	denali_irq_cleanup(denali->irq, denali);
	dma_unmap_single(denali->dev, denali->buf.dma_buf,
			 denali->mtd.writesize + denali->mtd.oobsize,
			 DMA_BIDIRECTIONAL);
}
EXPORT_SYMBOL(denali_remove);