1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NXP TDA18218HN silicon tuner driver
*
* Copyright (C) 2010 Antti Palosaari <crope@iki.fi>
*/
#include "tda18218_priv.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
/* write multiple registers */
static int tda18218_wr_regs(struct tda18218_priv *priv, u8 reg, u8 *val, u8 len)
{
int ret = 0, len2, remaining;
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[1] = {
{
.addr = priv->cfg->i2c_address,
.flags = 0,
.buf = buf,
}
};
if (1 + len > sizeof(buf)) {
dev_warn(&priv->i2c->dev,
"%s: i2c wr reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
for (remaining = len; remaining > 0;
remaining -= (priv->cfg->i2c_wr_max - 1)) {
len2 = remaining;
if (len2 > (priv->cfg->i2c_wr_max - 1))
len2 = (priv->cfg->i2c_wr_max - 1);
msg[0].len = 1 + len2;
buf[0] = reg + len - remaining;
memcpy(&buf[1], &val[len - remaining], len2);
ret = i2c_transfer(priv->i2c, msg, 1);
if (ret != 1)
break;
}
if (ret == 1) {
ret = 0;
} else {
dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%02x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* read multiple registers */
static int tda18218_rd_regs(struct tda18218_priv *priv, u8 reg, u8 *val, u8 len)
{
int ret;
u8 buf[MAX_XFER_SIZE]; /* we must start read always from reg 0x00 */
struct i2c_msg msg[2] = {
{
.addr = priv->cfg->i2c_address,
.flags = 0,
.len = 1,
.buf = "\x00",
}, {
.addr = priv->cfg->i2c_address,
.flags = I2C_M_RD,
.len = reg + len,
.buf = buf,
}
};
if (reg + len > sizeof(buf)) {
dev_warn(&priv->i2c->dev,
"%s: i2c wr reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret == 2) {
memcpy(val, &buf[reg], len);
ret = 0;
} else {
dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%02x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* write single register */
static int tda18218_wr_reg(struct tda18218_priv *priv, u8 reg, u8 val)
{
return tda18218_wr_regs(priv, reg, &val, 1);
}
/* read single register */
static int tda18218_rd_reg(struct tda18218_priv *priv, u8 reg, u8 *val)
{
return tda18218_rd_regs(priv, reg, val, 1);
}
static int tda18218_set_params(struct dvb_frontend *fe)
{
struct tda18218_priv *priv = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u32 bw = c->bandwidth_hz;
int ret;
u8 buf[3], i, BP_Filter, LP_Fc;
u32 LO_Frac;
/* TODO: find out correct AGC algorithm */
u8 agc[][2] = {
{ R20_AGC11, 0x60 },
{ R23_AGC21, 0x02 },
{ R20_AGC11, 0xa0 },
{ R23_AGC21, 0x09 },
{ R20_AGC11, 0xe0 },
{ R23_AGC21, 0x0c },
{ R20_AGC11, 0x40 },
{ R23_AGC21, 0x01 },
{ R20_AGC11, 0x80 },
{ R23_AGC21, 0x08 },
{ R20_AGC11, 0xc0 },
{ R23_AGC21, 0x0b },
{ R24_AGC22, 0x1c },
{ R24_AGC22, 0x0c },
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
/* low-pass filter cut-off frequency */
if (bw <= 6000000) {
LP_Fc = 0;
priv->if_frequency = 3000000;
} else if (bw <= 7000000) {
LP_Fc = 1;
priv->if_frequency = 3500000;
} else {
LP_Fc = 2;
priv->if_frequency = 4000000;
}
LO_Frac = c->frequency + priv->if_frequency;
/* band-pass filter */
if (LO_Frac < 188000000)
BP_Filter = 3;
else if (LO_Frac < 253000000)
BP_Filter = 4;
else if (LO_Frac < 343000000)
BP_Filter = 5;
else
BP_Filter = 6;
buf[0] = (priv->regs[R1A_IF1] & ~7) | BP_Filter; /* BP_Filter */
buf[1] = (priv->regs[R1B_IF2] & ~3) | LP_Fc; /* LP_Fc */
buf[2] = priv->regs[R1C_AGC2B];
ret = tda18218_wr_regs(priv, R1A_IF1, buf, 3);
if (ret)
goto error;
buf[0] = (LO_Frac / 1000) >> 12; /* LO_Frac_0 */
buf[1] = (LO_Frac / 1000) >> 4; /* LO_Frac_1 */
buf[2] = (LO_Frac / 1000) << 4 |
(priv->regs[R0C_MD5] & 0x0f); /* LO_Frac_2 */
ret = tda18218_wr_regs(priv, R0A_MD3, buf, 3);
if (ret)
goto error;
buf[0] = priv->regs[R0F_MD8] | (1 << 6); /* Freq_prog_Start */
ret = tda18218_wr_regs(priv, R0F_MD8, buf, 1);
if (ret)
goto error;
buf[0] = priv->regs[R0F_MD8] & ~(1 << 6); /* Freq_prog_Start */
ret = tda18218_wr_regs(priv, R0F_MD8, buf, 1);
if (ret)
goto error;
/* trigger AGC */
for (i = 0; i < ARRAY_SIZE(agc); i++) {
ret = tda18218_wr_reg(priv, agc[i][0], agc[i][1]);
if (ret)
goto error;
}
error:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int tda18218_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct tda18218_priv *priv = fe->tuner_priv;
*frequency = priv->if_frequency;
dev_dbg(&priv->i2c->dev, "%s: if_frequency=%d\n", __func__, *frequency);
return 0;
}
static int tda18218_sleep(struct dvb_frontend *fe)
{
struct tda18218_priv *priv = fe->tuner_priv;
int ret;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
/* standby */
ret = tda18218_wr_reg(priv, R17_PD1, priv->regs[R17_PD1] | (1 << 0));
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int tda18218_init(struct dvb_frontend *fe)
{
struct tda18218_priv *priv = fe->tuner_priv;
int ret;
/* TODO: calibrations */
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
ret = tda18218_wr_regs(priv, R00_ID, priv->regs, TDA18218_NUM_REGS);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static void tda18218_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
}
static const struct dvb_tuner_ops tda18218_tuner_ops = {
.info = {
.name = "NXP TDA18218",
.frequency_min_hz = 174 * MHz,
.frequency_max_hz = 864 * MHz,
.frequency_step_hz = 1 * kHz,
},
.release = tda18218_release,
.init = tda18218_init,
.sleep = tda18218_sleep,
.set_params = tda18218_set_params,
.get_if_frequency = tda18218_get_if_frequency,
};
struct dvb_frontend *tda18218_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c, struct tda18218_config *cfg)
{
struct tda18218_priv *priv = NULL;
u8 val;
int ret;
/* chip default registers values */
static u8 def_regs[] = {
0xc0, 0x88, 0x00, 0x8e, 0x03, 0x00, 0x00, 0xd0, 0x00, 0x40,
0x00, 0x00, 0x07, 0xff, 0x84, 0x09, 0x00, 0x13, 0x00, 0x00,
0x01, 0x84, 0x09, 0xf0, 0x19, 0x0a, 0x8e, 0x69, 0x98, 0x01,
0x00, 0x58, 0x10, 0x40, 0x8c, 0x00, 0x0c, 0x48, 0x85, 0xc9,
0xa7, 0x00, 0x00, 0x00, 0x30, 0x81, 0x80, 0x00, 0x39, 0x00,
0x8a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf6, 0xf6
};
priv = kzalloc(sizeof(struct tda18218_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
priv->cfg = cfg;
priv->i2c = i2c;
fe->tuner_priv = priv;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
/* check if the tuner is there */
ret = tda18218_rd_reg(priv, R00_ID, &val);
if (!ret)
dev_dbg(&priv->i2c->dev, "%s: chip id=%02x\n", __func__, val);
if (ret || val != def_regs[R00_ID]) {
kfree(priv);
return NULL;
}
dev_info(&priv->i2c->dev,
"%s: NXP TDA18218HN successfully identified\n",
KBUILD_MODNAME);
memcpy(&fe->ops.tuner_ops, &tda18218_tuner_ops,
sizeof(struct dvb_tuner_ops));
memcpy(priv->regs, def_regs, sizeof(def_regs));
/* loop-through enabled chip default register values */
if (priv->cfg->loop_through) {
priv->regs[R17_PD1] = 0xb0;
priv->regs[R18_PD2] = 0x59;
}
/* standby */
ret = tda18218_wr_reg(priv, R17_PD1, priv->regs[R17_PD1] | (1 << 0));
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
return fe;
}
EXPORT_SYMBOL(tda18218_attach);
MODULE_DESCRIPTION("NXP TDA18218HN silicon tuner driver");
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_LICENSE("GPL");
|