summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/vc4/vc4_hvs.c
blob: f746e9a7a88c3d8044cb872c4354ea834429c94c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 HVS module.
 *
 * The Hardware Video Scaler (HVS) is the piece of hardware that does
 * translation, scaling, colorspace conversion, and compositing of
 * pixels stored in framebuffers into a FIFO of pixels going out to
 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
 * system audio clock gate, specifically), which is much higher than
 * the pixel clock rate.
 *
 * There is a single global HVS, with multiple output FIFOs that can
 * be consumed by the PVs.  This file just manages the resources for
 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
 * each CRTC.
 */

#include <drm/drm_atomic_helper.h>
#include <linux/component.h>
#include "vc4_drv.h"
#include "vc4_regs.h"

static const struct debugfs_reg32 hvs_regs[] = {
	VC4_REG32(SCALER_DISPCTRL),
	VC4_REG32(SCALER_DISPSTAT),
	VC4_REG32(SCALER_DISPID),
	VC4_REG32(SCALER_DISPECTRL),
	VC4_REG32(SCALER_DISPPROF),
	VC4_REG32(SCALER_DISPDITHER),
	VC4_REG32(SCALER_DISPEOLN),
	VC4_REG32(SCALER_DISPLIST0),
	VC4_REG32(SCALER_DISPLIST1),
	VC4_REG32(SCALER_DISPLIST2),
	VC4_REG32(SCALER_DISPLSTAT),
	VC4_REG32(SCALER_DISPLACT0),
	VC4_REG32(SCALER_DISPLACT1),
	VC4_REG32(SCALER_DISPLACT2),
	VC4_REG32(SCALER_DISPCTRL0),
	VC4_REG32(SCALER_DISPBKGND0),
	VC4_REG32(SCALER_DISPSTAT0),
	VC4_REG32(SCALER_DISPBASE0),
	VC4_REG32(SCALER_DISPCTRL1),
	VC4_REG32(SCALER_DISPBKGND1),
	VC4_REG32(SCALER_DISPSTAT1),
	VC4_REG32(SCALER_DISPBASE1),
	VC4_REG32(SCALER_DISPCTRL2),
	VC4_REG32(SCALER_DISPBKGND2),
	VC4_REG32(SCALER_DISPSTAT2),
	VC4_REG32(SCALER_DISPBASE2),
	VC4_REG32(SCALER_DISPALPHA2),
	VC4_REG32(SCALER_OLEDOFFS),
	VC4_REG32(SCALER_OLEDCOEF0),
	VC4_REG32(SCALER_OLEDCOEF1),
	VC4_REG32(SCALER_OLEDCOEF2),
};

void vc4_hvs_dump_state(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
	int i;

	drm_print_regset32(&p, &vc4->hvs->regset);

	DRM_INFO("HVS ctx:\n");
	for (i = 0; i < 64; i += 4) {
		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
			 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
			 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
			 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
			 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
	}
}

static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
{
	struct drm_info_node *node = m->private;
	struct drm_device *dev = node->minor->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_printer p = drm_seq_file_printer(m);

	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));

	return 0;
}

/* The filter kernel is composed of dwords each containing 3 9-bit
 * signed integers packed next to each other.
 */
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
	((((c0) & 0x1ff) << 0) |				\
	 (((c1) & 0x1ff) << 9) |				\
	 (((c2) & 0x1ff) << 18))

/* The whole filter kernel is arranged as the coefficients 0-16 going
 * up, then a pad, then 17-31 going down and reversed within the
 * dwords.  This means that a linear phase kernel (where it's
 * symmetrical at the boundary between 15 and 16) has the last 5
 * dwords matching the first 5, but reversed.
 */
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
				c9, c10, c11, c12, c13, c14, c15)	\
	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
	 VC4_PPF_FILTER_WORD(c15, c15, 0)}

#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)

/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
 */
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
				50, 82, 119, 155, 187, 213, 227);

static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
					struct drm_mm_node *space,
					const u32 *kernel)
{
	int ret, i;
	u32 __iomem *dst_kernel;

	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
	if (ret) {
		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
			  ret);
		return ret;
	}

	dst_kernel = hvs->dlist + space->start;

	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
			writel(kernel[i], &dst_kernel[i]);
		else {
			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
			       &dst_kernel[i]);
		}
	}

	return 0;
}

void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);

	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);

	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
}

void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);

	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);

	HVS_WRITE(SCALER_DISPSTAT,
		  SCALER_DISPSTAT_EUFLOW(channel));
	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
}

static void vc4_hvs_report_underrun(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	atomic_inc(&vc4->underrun);
	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
}

static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
{
	struct drm_device *dev = data;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	irqreturn_t irqret = IRQ_NONE;
	int channel;
	u32 control;
	u32 status;

	status = HVS_READ(SCALER_DISPSTAT);
	control = HVS_READ(SCALER_DISPCTRL);

	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
		/* Interrupt masking is not always honored, so check it here. */
		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
			vc4_hvs_mask_underrun(dev, channel);
			vc4_hvs_report_underrun(dev);

			irqret = IRQ_HANDLED;
		}
	}

	/* Clear every per-channel interrupt flag. */
	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
				   SCALER_DISPSTAT_IRQMASK(1) |
				   SCALER_DISPSTAT_IRQMASK(2));

	return irqret;
}

static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = dev_get_drvdata(master);
	struct vc4_dev *vc4 = drm->dev_private;
	struct vc4_hvs *hvs = NULL;
	int ret;
	u32 dispctrl;

	hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
	if (!hvs)
		return -ENOMEM;

	hvs->pdev = pdev;

	hvs->regs = vc4_ioremap_regs(pdev, 0);
	if (IS_ERR(hvs->regs))
		return PTR_ERR(hvs->regs);

	hvs->regset.base = hvs->regs;
	hvs->regset.regs = hvs_regs;
	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);

	hvs->dlist = hvs->regs + SCALER_DLIST_START;

	spin_lock_init(&hvs->mm_lock);

	/* Set up the HVS display list memory manager.  We never
	 * overwrite the setup from the bootloader (just 128b out of
	 * our 16K), since we don't want to scramble the screen when
	 * transitioning from the firmware's boot setup to runtime.
	 */
	drm_mm_init(&hvs->dlist_mm,
		    HVS_BOOTLOADER_DLIST_END,
		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);

	/* Set up the HVS LBM memory manager.  We could have some more
	 * complicated data structure that allowed reuse of LBM areas
	 * between planes when they don't overlap on the screen, but
	 * for now we just allocate globally.
	 */
	drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);

	/* Upload filter kernels.  We only have the one for now, so we
	 * keep it around for the lifetime of the driver.
	 */
	ret = vc4_hvs_upload_linear_kernel(hvs,
					   &hvs->mitchell_netravali_filter,
					   mitchell_netravali_1_3_1_3_kernel);
	if (ret)
		return ret;

	vc4->hvs = hvs;

	dispctrl = HVS_READ(SCALER_DISPCTRL);

	dispctrl |= SCALER_DISPCTRL_ENABLE;
	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
		    SCALER_DISPCTRL_DISPEIRQ(1) |
		    SCALER_DISPCTRL_DISPEIRQ(2);

	/* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
	 * be unused.
	 */
	dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
		      SCALER_DISPCTRL_SLVWREIRQ |
		      SCALER_DISPCTRL_SLVRDEIRQ |
		      SCALER_DISPCTRL_DSPEIEOF(0) |
		      SCALER_DISPCTRL_DSPEIEOF(1) |
		      SCALER_DISPCTRL_DSPEIEOF(2) |
		      SCALER_DISPCTRL_DSPEIEOLN(0) |
		      SCALER_DISPCTRL_DSPEIEOLN(1) |
		      SCALER_DISPCTRL_DSPEIEOLN(2) |
		      SCALER_DISPCTRL_DSPEISLUR(0) |
		      SCALER_DISPCTRL_DSPEISLUR(1) |
		      SCALER_DISPCTRL_DSPEISLUR(2) |
		      SCALER_DISPCTRL_SCLEIRQ);
	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);

	HVS_WRITE(SCALER_DISPCTRL, dispctrl);

	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
	if (ret)
		return ret;

	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
	vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
			     NULL);

	return 0;
}

static void vc4_hvs_unbind(struct device *dev, struct device *master,
			   void *data)
{
	struct drm_device *drm = dev_get_drvdata(master);
	struct vc4_dev *vc4 = drm->dev_private;

	if (vc4->hvs->mitchell_netravali_filter.allocated)
		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);

	drm_mm_takedown(&vc4->hvs->dlist_mm);
	drm_mm_takedown(&vc4->hvs->lbm_mm);

	vc4->hvs = NULL;
}

static const struct component_ops vc4_hvs_ops = {
	.bind   = vc4_hvs_bind,
	.unbind = vc4_hvs_unbind,
};

static int vc4_hvs_dev_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &vc4_hvs_ops);
}

static int vc4_hvs_dev_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &vc4_hvs_ops);
	return 0;
}

static const struct of_device_id vc4_hvs_dt_match[] = {
	{ .compatible = "brcm,bcm2835-hvs" },
	{}
};

struct platform_driver vc4_hvs_driver = {
	.probe = vc4_hvs_dev_probe,
	.remove = vc4_hvs_dev_remove,
	.driver = {
		.name = "vc4_hvs",
		.of_match_table = vc4_hvs_dt_match,
	},
};