summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/amd/amdkfd/kfd_crat.c
blob: ee4996029a86866fc05807e60ec956e2ddad80df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
/*
 * Copyright 2015-2017 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include "kfd_crat.h"
#include "kfd_priv.h"
#include "kfd_topology.h"
#include "kfd_iommu.h"

/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
 * GPU processor ID are expressed with Bit[31]=1.
 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
 * used in the CRAT.
 */
static uint32_t gpu_processor_id_low = 0x80001000;

/* Return the next available gpu_processor_id and increment it for next GPU
 *	@total_cu_count - Total CUs present in the GPU including ones
 *			  masked off
 */
static inline unsigned int get_and_inc_gpu_processor_id(
				unsigned int total_cu_count)
{
	int current_id = gpu_processor_id_low;

	gpu_processor_id_low += total_cu_count;
	return current_id;
}

/* Static table to describe GPU Cache information */
struct kfd_gpu_cache_info {
	uint32_t	cache_size;
	uint32_t	cache_level;
	uint32_t	flags;
	/* Indicates how many Compute Units share this cache
	 * Value = 1 indicates the cache is not shared
	 */
	uint32_t	num_cu_shared;
};

static struct kfd_gpu_cache_info kaveri_cache_info[] = {
	{
		/* TCP L1 Cache per CU */
		.cache_size = 16,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 1,

	},
	{
		/* Scalar L1 Instruction Cache (in SQC module) per bank */
		.cache_size = 16,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_INST_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 2,
	},
	{
		/* Scalar L1 Data Cache (in SQC module) per bank */
		.cache_size = 8,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 2,
	},

	/* TODO: Add L2 Cache information */
};


static struct kfd_gpu_cache_info carrizo_cache_info[] = {
	{
		/* TCP L1 Cache per CU */
		.cache_size = 16,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 1,
	},
	{
		/* Scalar L1 Instruction Cache (in SQC module) per bank */
		.cache_size = 8,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_INST_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 4,
	},
	{
		/* Scalar L1 Data Cache (in SQC module) per bank. */
		.cache_size = 4,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 4,
	},

	/* TODO: Add L2 Cache information */
};

/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
 * the following ASICs may need a separate table.
 */
#define hawaii_cache_info kaveri_cache_info
#define tonga_cache_info carrizo_cache_info
#define fiji_cache_info  carrizo_cache_info
#define polaris10_cache_info carrizo_cache_info
#define polaris11_cache_info carrizo_cache_info
/* TODO - check & update Vega10 cache details */
#define vega10_cache_info carrizo_cache_info
#define raven_cache_info carrizo_cache_info

static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
		struct crat_subtype_computeunit *cu)
{
	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
	dev->node_props.cpu_core_id_base = cu->processor_id_low;
	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;

	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
			cu->processor_id_low);
}

static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
		struct crat_subtype_computeunit *cu)
{
	dev->node_props.simd_id_base = cu->processor_id_low;
	dev->node_props.simd_count = cu->num_simd_cores;
	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
	dev->node_props.wave_front_size = cu->wave_front_size;
	dev->node_props.array_count = cu->array_count;
	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
}

/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
 * topology device present in the device_list
 */
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
				struct list_head *device_list)
{
	struct kfd_topology_device *dev;

	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
			cu->proximity_domain, cu->hsa_capability);
	list_for_each_entry(dev, device_list, list) {
		if (cu->proximity_domain == dev->proximity_domain) {
			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
				kfd_populated_cu_info_cpu(dev, cu);

			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
				kfd_populated_cu_info_gpu(dev, cu);
			break;
		}
	}

	return 0;
}

static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
		struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *props;

	list_for_each_entry(props, &dev->mem_props, list) {
		if (props->heap_type == heap_type
				&& props->flags == flags
				&& props->width == width)
			return props;
	}

	return NULL;
}
/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
 * topology device present in the device_list
 */
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
				struct list_head *device_list)
{
	struct kfd_mem_properties *props;
	struct kfd_topology_device *dev;
	uint32_t heap_type;
	uint64_t size_in_bytes;
	uint32_t flags = 0;
	uint32_t width;

	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
			mem->proximity_domain);
	list_for_each_entry(dev, device_list, list) {
		if (mem->proximity_domain == dev->proximity_domain) {
			/* We're on GPU node */
			if (dev->node_props.cpu_cores_count == 0) {
				/* APU */
				if (mem->visibility_type == 0)
					heap_type =
						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
				/* dGPU */
				else
					heap_type = mem->visibility_type;
			} else
				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;

			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
				flags |= HSA_MEM_FLAGS_NON_VOLATILE;

			size_in_bytes =
				((uint64_t)mem->length_high << 32) +
							mem->length_low;
			width = mem->width;

			/* Multiple banks of the same type are aggregated into
			 * one. User mode doesn't care about multiple physical
			 * memory segments. It's managed as a single virtual
			 * heap for user mode.
			 */
			props = find_subtype_mem(heap_type, flags, width, dev);
			if (props) {
				props->size_in_bytes += size_in_bytes;
				break;
			}

			props = kfd_alloc_struct(props);
			if (!props)
				return -ENOMEM;

			props->heap_type = heap_type;
			props->flags = flags;
			props->size_in_bytes = size_in_bytes;
			props->width = width;

			dev->node_props.mem_banks_count++;
			list_add_tail(&props->list, &dev->mem_props);

			break;
		}
	}

	return 0;
}

/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
 * topology device present in the device_list
 */
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
			struct list_head *device_list)
{
	struct kfd_cache_properties *props;
	struct kfd_topology_device *dev;
	uint32_t id;
	uint32_t total_num_of_cu;

	id = cache->processor_id_low;

	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
	list_for_each_entry(dev, device_list, list) {
		total_num_of_cu = (dev->node_props.array_count *
					dev->node_props.cu_per_simd_array);

		/* Cache infomration in CRAT doesn't have proximity_domain
		 * information as it is associated with a CPU core or GPU
		 * Compute Unit. So map the cache using CPU core Id or SIMD
		 * (GPU) ID.
		 * TODO: This works because currently we can safely assume that
		 *  Compute Units are parsed before caches are parsed. In
		 *  future, remove this dependency
		 */
		if ((id >= dev->node_props.cpu_core_id_base &&
			id <= dev->node_props.cpu_core_id_base +
				dev->node_props.cpu_cores_count) ||
			(id >= dev->node_props.simd_id_base &&
			id < dev->node_props.simd_id_base +
				total_num_of_cu)) {
			props = kfd_alloc_struct(props);
			if (!props)
				return -ENOMEM;

			props->processor_id_low = id;
			props->cache_level = cache->cache_level;
			props->cache_size = cache->cache_size;
			props->cacheline_size = cache->cache_line_size;
			props->cachelines_per_tag = cache->lines_per_tag;
			props->cache_assoc = cache->associativity;
			props->cache_latency = cache->cache_latency;
			memcpy(props->sibling_map, cache->sibling_map,
					sizeof(props->sibling_map));

			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_DATA;
			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_CPU;
			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_HSACU;

			dev->cache_count++;
			dev->node_props.caches_count++;
			list_add_tail(&props->list, &dev->cache_props);

			break;
		}
	}

	return 0;
}

/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
 * topology device present in the device_list
 */
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
					struct list_head *device_list)
{
	struct kfd_iolink_properties *props = NULL, *props2;
	struct kfd_topology_device *dev, *cpu_dev;
	uint32_t id_from;
	uint32_t id_to;

	id_from = iolink->proximity_domain_from;
	id_to = iolink->proximity_domain_to;

	pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
			id_from);
	list_for_each_entry(dev, device_list, list) {
		if (id_from == dev->proximity_domain) {
			props = kfd_alloc_struct(props);
			if (!props)
				return -ENOMEM;

			props->node_from = id_from;
			props->node_to = id_to;
			props->ver_maj = iolink->version_major;
			props->ver_min = iolink->version_minor;
			props->iolink_type = iolink->io_interface_type;

			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
				props->weight = 20;
			else
				props->weight = node_distance(id_from, id_to);

			props->min_latency = iolink->minimum_latency;
			props->max_latency = iolink->maximum_latency;
			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
			props->rec_transfer_size =
					iolink->recommended_transfer_size;

			dev->io_link_count++;
			dev->node_props.io_links_count++;
			list_add_tail(&props->list, &dev->io_link_props);
			break;
		}
	}

	/* CPU topology is created before GPUs are detected, so CPU->GPU
	 * links are not built at that time. If a PCIe type is discovered, it
	 * means a GPU is detected and we are adding GPU->CPU to the topology.
	 * At this time, also add the corresponded CPU->GPU link.
	 */
	if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
		cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
		if (!cpu_dev)
			return -ENODEV;
		/* same everything but the other direction */
		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
		props2->node_from = id_to;
		props2->node_to = id_from;
		props2->kobj = NULL;
		cpu_dev->io_link_count++;
		cpu_dev->node_props.io_links_count++;
		list_add_tail(&props2->list, &cpu_dev->io_link_props);
	}

	return 0;
}

/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
 * present in the device_list
 *	@sub_type_hdr - subtype section of crat_image
 *	@device_list - list of topology devices present in this crat_image
 */
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
				struct list_head *device_list)
{
	struct crat_subtype_computeunit *cu;
	struct crat_subtype_memory *mem;
	struct crat_subtype_cache *cache;
	struct crat_subtype_iolink *iolink;
	int ret = 0;

	switch (sub_type_hdr->type) {
	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
		ret = kfd_parse_subtype_cu(cu, device_list);
		break;
	case CRAT_SUBTYPE_MEMORY_AFFINITY:
		mem = (struct crat_subtype_memory *)sub_type_hdr;
		ret = kfd_parse_subtype_mem(mem, device_list);
		break;
	case CRAT_SUBTYPE_CACHE_AFFINITY:
		cache = (struct crat_subtype_cache *)sub_type_hdr;
		ret = kfd_parse_subtype_cache(cache, device_list);
		break;
	case CRAT_SUBTYPE_TLB_AFFINITY:
		/*
		 * For now, nothing to do here
		 */
		pr_debug("Found TLB entry in CRAT table (not processing)\n");
		break;
	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
		/*
		 * For now, nothing to do here
		 */
		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
		break;
	case CRAT_SUBTYPE_IOLINK_AFFINITY:
		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
		ret = kfd_parse_subtype_iolink(iolink, device_list);
		break;
	default:
		pr_warn("Unknown subtype %d in CRAT\n",
				sub_type_hdr->type);
	}

	return ret;
}

/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
 * create a kfd_topology_device and add in to device_list. Also parse
 * CRAT subtypes and attach it to appropriate kfd_topology_device
 *	@crat_image - input image containing CRAT
 *	@device_list - [OUT] list of kfd_topology_device generated after
 *		       parsing crat_image
 *	@proximity_domain - Proximity domain of the first device in the table
 *
 *	Return - 0 if successful else -ve value
 */
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
			 uint32_t proximity_domain)
{
	struct kfd_topology_device *top_dev = NULL;
	struct crat_subtype_generic *sub_type_hdr;
	uint16_t node_id;
	int ret = 0;
	struct crat_header *crat_table = (struct crat_header *)crat_image;
	uint16_t num_nodes;
	uint32_t image_len;

	if (!crat_image)
		return -EINVAL;

	if (!list_empty(device_list)) {
		pr_warn("Error device list should be empty\n");
		return -EINVAL;
	}

	num_nodes = crat_table->num_domains;
	image_len = crat_table->length;

	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);

	for (node_id = 0; node_id < num_nodes; node_id++) {
		top_dev = kfd_create_topology_device(device_list);
		if (!top_dev)
			break;
		top_dev->proximity_domain = proximity_domain++;
	}

	if (!top_dev) {
		ret = -ENOMEM;
		goto err;
	}

	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
			CRAT_OEMTABLEID_LENGTH);
	top_dev->oem_revision = crat_table->oem_revision;

	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
			((char *)crat_image) + image_len) {
		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
			ret = kfd_parse_subtype(sub_type_hdr, device_list);
			if (ret)
				break;
		}

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
				sub_type_hdr->length);
	}

err:
	if (ret)
		kfd_release_topology_device_list(device_list);

	return ret;
}

/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
static int fill_in_pcache(struct crat_subtype_cache *pcache,
				struct kfd_gpu_cache_info *pcache_info,
				struct kfd_cu_info *cu_info,
				int mem_available,
				int cu_bitmask,
				int cache_type, unsigned int cu_processor_id,
				int cu_block)
{
	unsigned int cu_sibling_map_mask;
	int first_active_cu;

	/* First check if enough memory is available */
	if (sizeof(struct crat_subtype_cache) > mem_available)
		return -ENOMEM;

	cu_sibling_map_mask = cu_bitmask;
	cu_sibling_map_mask >>= cu_block;
	cu_sibling_map_mask &=
		((1 << pcache_info[cache_type].num_cu_shared) - 1);
	first_active_cu = ffs(cu_sibling_map_mask);

	/* CU could be inactive. In case of shared cache find the first active
	 * CU. and incase of non-shared cache check if the CU is inactive. If
	 * inactive active skip it
	 */
	if (first_active_cu) {
		memset(pcache, 0, sizeof(struct crat_subtype_cache));
		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
		pcache->length = sizeof(struct crat_subtype_cache);
		pcache->flags = pcache_info[cache_type].flags;
		pcache->processor_id_low = cu_processor_id
					 + (first_active_cu - 1);
		pcache->cache_level = pcache_info[cache_type].cache_level;
		pcache->cache_size = pcache_info[cache_type].cache_size;

		/* Sibling map is w.r.t processor_id_low, so shift out
		 * inactive CU
		 */
		cu_sibling_map_mask =
			cu_sibling_map_mask >> (first_active_cu - 1);

		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
		pcache->sibling_map[1] =
				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
		pcache->sibling_map[2] =
				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
		pcache->sibling_map[3] =
				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
		return 0;
	}
	return 1;
}

/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
 * tables
 *
 *	@kdev - [IN] GPU device
 *	@gpu_processor_id - [IN] GPU processor ID to which these caches
 *			    associate
 *	@available_size - [IN] Amount of memory available in pcache
 *	@cu_info - [IN] Compute Unit info obtained from KGD
 *	@pcache - [OUT] memory into which cache data is to be filled in.
 *	@size_filled - [OUT] amount of data used up in pcache.
 *	@num_of_entries - [OUT] number of caches added
 */
static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
			int gpu_processor_id,
			int available_size,
			struct kfd_cu_info *cu_info,
			struct crat_subtype_cache *pcache,
			int *size_filled,
			int *num_of_entries)
{
	struct kfd_gpu_cache_info *pcache_info;
	int num_of_cache_types = 0;
	int i, j, k;
	int ct = 0;
	int mem_available = available_size;
	unsigned int cu_processor_id;
	int ret;

	switch (kdev->device_info->asic_family) {
	case CHIP_KAVERI:
		pcache_info = kaveri_cache_info;
		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
		break;
	case CHIP_HAWAII:
		pcache_info = hawaii_cache_info;
		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
		break;
	case CHIP_CARRIZO:
		pcache_info = carrizo_cache_info;
		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
		break;
	case CHIP_TONGA:
		pcache_info = tonga_cache_info;
		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
		break;
	case CHIP_FIJI:
		pcache_info = fiji_cache_info;
		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
		break;
	case CHIP_POLARIS10:
		pcache_info = polaris10_cache_info;
		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
		break;
	case CHIP_POLARIS11:
		pcache_info = polaris11_cache_info;
		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
		break;
	case CHIP_VEGA10:
		pcache_info = vega10_cache_info;
		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
		break;
	case CHIP_RAVEN:
		pcache_info = raven_cache_info;
		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
		break;
	default:
		return -EINVAL;
	}

	*size_filled = 0;
	*num_of_entries = 0;

	/* For each type of cache listed in the kfd_gpu_cache_info table,
	 * go through all available Compute Units.
	 * The [i,j,k] loop will
	 *		if kfd_gpu_cache_info.num_cu_shared = 1
	 *			will parse through all available CU
	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
	 *			then it will consider only one CU from
	 *			the shared unit
	 */

	for (ct = 0; ct < num_of_cache_types; ct++) {
		cu_processor_id = gpu_processor_id;
		for (i = 0; i < cu_info->num_shader_engines; i++) {
			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
				j++) {
				for (k = 0; k < cu_info->num_cu_per_sh;
					k += pcache_info[ct].num_cu_shared) {

					ret = fill_in_pcache(pcache,
						pcache_info,
						cu_info,
						mem_available,
						cu_info->cu_bitmap[i][j],
						ct,
						cu_processor_id,
						k);

					if (ret < 0)
						break;

					if (!ret) {
						pcache++;
						(*num_of_entries)++;
						mem_available -=
							sizeof(*pcache);
						(*size_filled) +=
							sizeof(*pcache);
					}

					/* Move to next CU block */
					cu_processor_id +=
						pcache_info[ct].num_cu_shared;
				}
			}
		}
	}

	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);

	return 0;
}

/*
 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
 * copies CRAT from ACPI (if available).
 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
 *
 *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
 *		     crat_image will be NULL
 *	@size: [OUT] size of crat_image
 *
 *	Return 0 if successful else return error code
 */
int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
{
	struct acpi_table_header *crat_table;
	acpi_status status;
	void *pcrat_image;

	if (!crat_image)
		return -EINVAL;

	*crat_image = NULL;

	/* Fetch the CRAT table from ACPI */
	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
	if (status == AE_NOT_FOUND) {
		pr_warn("CRAT table not found\n");
		return -ENODATA;
	} else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);

		pr_err("CRAT table error: %s\n", err);
		return -EINVAL;
	}

	if (ignore_crat) {
		pr_info("CRAT table disabled by module option\n");
		return -ENODATA;
	}

	pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
	if (!pcrat_image)
		return -ENOMEM;

	memcpy(pcrat_image, crat_table, crat_table->length);

	*crat_image = pcrat_image;
	*size = crat_table->length;

	return 0;
}

/* Memory required to create Virtual CRAT.
 * Since there is no easy way to predict the amount of memory required, the
 * following amount are allocated for CPU and GPU Virtual CRAT. This is
 * expected to cover all known conditions. But to be safe additional check
 * is put in the code to ensure we don't overwrite.
 */
#define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
#define VCRAT_SIZE_FOR_GPU	(3 * PAGE_SIZE)

/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
 *
 *	@numa_node_id: CPU NUMA node id
 *	@avail_size: Available size in the memory
 *	@sub_type_hdr: Memory into which compute info will be filled in
 *
 *	Return 0 if successful else return -ve value
 */
static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
				int proximity_domain,
				struct crat_subtype_computeunit *sub_type_hdr)
{
	const struct cpumask *cpumask;

	*avail_size -= sizeof(struct crat_subtype_computeunit);
	if (*avail_size < 0)
		return -ENOMEM;

	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));

	/* Fill in subtype header data */
	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

	cpumask = cpumask_of_node(numa_node_id);

	/* Fill in CU data */
	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
	sub_type_hdr->proximity_domain = proximity_domain;
	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
	if (sub_type_hdr->processor_id_low == -1)
		return -EINVAL;

	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);

	return 0;
}

/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
 *
 *	@numa_node_id: CPU NUMA node id
 *	@avail_size: Available size in the memory
 *	@sub_type_hdr: Memory into which compute info will be filled in
 *
 *	Return 0 if successful else return -ve value
 */
static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
			int proximity_domain,
			struct crat_subtype_memory *sub_type_hdr)
{
	uint64_t mem_in_bytes = 0;
	pg_data_t *pgdat;
	int zone_type;

	*avail_size -= sizeof(struct crat_subtype_memory);
	if (*avail_size < 0)
		return -ENOMEM;

	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));

	/* Fill in subtype header data */
	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

	/* Fill in Memory Subunit data */

	/* Unlike si_meminfo, si_meminfo_node is not exported. So
	 * the following lines are duplicated from si_meminfo_node
	 * function
	 */
	pgdat = NODE_DATA(numa_node_id);
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
	mem_in_bytes <<= PAGE_SHIFT;

	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
	sub_type_hdr->proximity_domain = proximity_domain;

	return 0;
}

static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
				uint32_t *num_entries,
				struct crat_subtype_iolink *sub_type_hdr)
{
	int nid;
	struct cpuinfo_x86 *c = &cpu_data(0);
	uint8_t link_type;

	if (c->x86_vendor == X86_VENDOR_AMD)
		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
	else
		link_type = CRAT_IOLINK_TYPE_QPI_1_1;

	*num_entries = 0;

	/* Create IO links from this node to other CPU nodes */
	for_each_online_node(nid) {
		if (nid == numa_node_id) /* node itself */
			continue;

		*avail_size -= sizeof(struct crat_subtype_iolink);
		if (*avail_size < 0)
			return -ENOMEM;

		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));

		/* Fill in subtype header data */
		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

		/* Fill in IO link data */
		sub_type_hdr->proximity_domain_from = numa_node_id;
		sub_type_hdr->proximity_domain_to = nid;
		sub_type_hdr->io_interface_type = link_type;

		(*num_entries)++;
		sub_type_hdr++;
	}

	return 0;
}

/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
 *
 *	@pcrat_image: Fill in VCRAT for CPU
 *	@size:	[IN] allocated size of crat_image.
 *		[OUT] actual size of data filled in crat_image
 */
static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
{
	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
	struct acpi_table_header *acpi_table;
	acpi_status status;
	struct crat_subtype_generic *sub_type_hdr;
	int avail_size = *size;
	int numa_node_id;
	uint32_t entries = 0;
	int ret = 0;

	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
		return -EINVAL;

	/* Fill in CRAT Header.
	 * Modify length and total_entries as subunits are added.
	 */
	avail_size -= sizeof(struct crat_header);
	if (avail_size < 0)
		return -ENOMEM;

	memset(crat_table, 0, sizeof(struct crat_header));
	memcpy(&crat_table->signature, CRAT_SIGNATURE,
			sizeof(crat_table->signature));
	crat_table->length = sizeof(struct crat_header);

	status = acpi_get_table("DSDT", 0, &acpi_table);
	if (status != AE_OK)
		pr_warn("DSDT table not found for OEM information\n");
	else {
		crat_table->oem_revision = acpi_table->revision;
		memcpy(crat_table->oem_id, acpi_table->oem_id,
				CRAT_OEMID_LENGTH);
		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
				CRAT_OEMTABLEID_LENGTH);
	}
	crat_table->total_entries = 0;
	crat_table->num_domains = 0;

	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);

	for_each_online_node(numa_node_id) {
		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
			continue;

		/* Fill in Subtype: Compute Unit */
		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
			crat_table->num_domains,
			(struct crat_subtype_computeunit *)sub_type_hdr);
		if (ret < 0)
			return ret;
		crat_table->length += sub_type_hdr->length;
		crat_table->total_entries++;

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
			sub_type_hdr->length);

		/* Fill in Subtype: Memory */
		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
			crat_table->num_domains,
			(struct crat_subtype_memory *)sub_type_hdr);
		if (ret < 0)
			return ret;
		crat_table->length += sub_type_hdr->length;
		crat_table->total_entries++;

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
			sub_type_hdr->length);

		/* Fill in Subtype: IO Link */
		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
				&entries,
				(struct crat_subtype_iolink *)sub_type_hdr);
		if (ret < 0)
			return ret;
		crat_table->length += (sub_type_hdr->length * entries);
		crat_table->total_entries += entries;

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
				sub_type_hdr->length * entries);

		crat_table->num_domains++;
	}

	/* TODO: Add cache Subtype for CPU.
	 * Currently, CPU cache information is available in function
	 * detect_cache_attributes(cpu) defined in the file
	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
	 * exported and to get the same information the code needs to be
	 * duplicated.
	 */

	*size = crat_table->length;
	pr_info("Virtual CRAT table created for CPU\n");

	return 0;
}

static int kfd_fill_gpu_memory_affinity(int *avail_size,
		struct kfd_dev *kdev, uint8_t type, uint64_t size,
		struct crat_subtype_memory *sub_type_hdr,
		uint32_t proximity_domain,
		const struct kfd_local_mem_info *local_mem_info)
{
	*avail_size -= sizeof(struct crat_subtype_memory);
	if (*avail_size < 0)
		return -ENOMEM;

	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;

	sub_type_hdr->proximity_domain = proximity_domain;

	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
			type, size);

	sub_type_hdr->length_low = lower_32_bits(size);
	sub_type_hdr->length_high = upper_32_bits(size);

	sub_type_hdr->width = local_mem_info->vram_width;
	sub_type_hdr->visibility_type = type;

	return 0;
}

/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
 * to its NUMA node
 *	@avail_size: Available size in the memory
 *	@kdev - [IN] GPU device
 *	@sub_type_hdr: Memory into which io link info will be filled in
 *	@proximity_domain - proximity domain of the GPU node
 *
 *	Return 0 if successful else return -ve value
 */
static int kfd_fill_gpu_direct_io_link(int *avail_size,
			struct kfd_dev *kdev,
			struct crat_subtype_iolink *sub_type_hdr,
			uint32_t proximity_domain)
{
	*avail_size -= sizeof(struct crat_subtype_iolink);
	if (*avail_size < 0)
		return -ENOMEM;

	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));

	/* Fill in subtype header data */
	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;

	/* Fill in IOLINK subtype.
	 * TODO: Fill-in other fields of iolink subtype
	 */
	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
	sub_type_hdr->proximity_domain_from = proximity_domain;
#ifdef CONFIG_NUMA
	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
		sub_type_hdr->proximity_domain_to = 0;
	else
		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
#else
	sub_type_hdr->proximity_domain_to = 0;
#endif
	return 0;
}

/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
 *
 *	@pcrat_image: Fill in VCRAT for GPU
 *	@size:	[IN] allocated size of crat_image.
 *		[OUT] actual size of data filled in crat_image
 */
static int kfd_create_vcrat_image_gpu(void *pcrat_image,
				      size_t *size, struct kfd_dev *kdev,
				      uint32_t proximity_domain)
{
	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
	struct crat_subtype_generic *sub_type_hdr;
	struct crat_subtype_computeunit *cu;
	struct kfd_cu_info cu_info;
	int avail_size = *size;
	uint32_t total_num_of_cu;
	int num_of_cache_entries = 0;
	int cache_mem_filled = 0;
	int ret = 0;
	struct kfd_local_mem_info local_mem_info;

	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
		return -EINVAL;

	/* Fill the CRAT Header.
	 * Modify length and total_entries as subunits are added.
	 */
	avail_size -= sizeof(struct crat_header);
	if (avail_size < 0)
		return -ENOMEM;

	memset(crat_table, 0, sizeof(struct crat_header));

	memcpy(&crat_table->signature, CRAT_SIGNATURE,
			sizeof(crat_table->signature));
	/* Change length as we add more subtypes*/
	crat_table->length = sizeof(struct crat_header);
	crat_table->num_domains = 1;
	crat_table->total_entries = 0;

	/* Fill in Subtype: Compute Unit
	 * First fill in the sub type header and then sub type data
	 */
	avail_size -= sizeof(struct crat_subtype_computeunit);
	if (avail_size < 0)
		return -ENOMEM;

	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));

	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

	/* Fill CU subtype data */
	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
	cu->proximity_domain = proximity_domain;

	kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
	cu->num_simd_per_cu = cu_info.simd_per_cu;
	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
	cu->max_waves_simd = cu_info.max_waves_per_simd;

	cu->wave_front_size = cu_info.wave_front_size;
	cu->array_count = cu_info.num_shader_arrays_per_engine *
		cu_info.num_shader_engines;
	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
	cu->num_cu_per_array = cu_info.num_cu_per_sh;
	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
	cu->num_banks = cu_info.num_shader_engines;
	cu->lds_size_in_kb = cu_info.lds_size;

	cu->hsa_capability = 0;

	/* Check if this node supports IOMMU. During parsing this flag will
	 * translate to HSA_CAP_ATS_PRESENT
	 */
	if (!kfd_iommu_check_device(kdev))
		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;

	crat_table->length += sub_type_hdr->length;
	crat_table->total_entries++;

	/* Fill in Subtype: Memory. Only on systems with large BAR (no
	 * private FB), report memory as public. On other systems
	 * report the total FB size (public+private) as a single
	 * private heap.
	 */
	kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
			sub_type_hdr->length);

	if (debug_largebar)
		local_mem_info.local_mem_size_private = 0;

	if (local_mem_info.local_mem_size_private == 0)
		ret = kfd_fill_gpu_memory_affinity(&avail_size,
				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
				local_mem_info.local_mem_size_public,
				(struct crat_subtype_memory *)sub_type_hdr,
				proximity_domain,
				&local_mem_info);
	else
		ret = kfd_fill_gpu_memory_affinity(&avail_size,
				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
				local_mem_info.local_mem_size_public +
				local_mem_info.local_mem_size_private,
				(struct crat_subtype_memory *)sub_type_hdr,
				proximity_domain,
				&local_mem_info);
	if (ret < 0)
		return ret;

	crat_table->length += sizeof(struct crat_subtype_memory);
	crat_table->total_entries++;

	/* TODO: Fill in cache information. This information is NOT readily
	 * available in KGD
	 */
	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
		sub_type_hdr->length);
	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
				avail_size,
				&cu_info,
				(struct crat_subtype_cache *)sub_type_hdr,
				&cache_mem_filled,
				&num_of_cache_entries);

	if (ret < 0)
		return ret;

	crat_table->length += cache_mem_filled;
	crat_table->total_entries += num_of_cache_entries;
	avail_size -= cache_mem_filled;

	/* Fill in Subtype: IO_LINKS
	 *  Only direct links are added here which is Link from GPU to
	 *  to its NUMA node. Indirect links are added by userspace.
	 */
	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
		cache_mem_filled);
	ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);

	if (ret < 0)
		return ret;

	crat_table->length += sub_type_hdr->length;
	crat_table->total_entries++;

	*size = crat_table->length;
	pr_info("Virtual CRAT table created for GPU\n");

	return ret;
}

/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
 *		creates a Virtual CRAT (VCRAT) image
 *
 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
 *
 *	@crat_image: VCRAT image created because ACPI does not have a
 *		     CRAT for this device
 *	@size: [OUT] size of virtual crat_image
 *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
 *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
 *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
 *			-- this option is not currently implemented.
 *			The assumption is that all AMD APUs will have CRAT
 *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
 *
 *	Return 0 if successful else return -ve value
 */
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
				  int flags, struct kfd_dev *kdev,
				  uint32_t proximity_domain)
{
	void *pcrat_image = NULL;
	int ret = 0;

	if (!crat_image)
		return -EINVAL;

	*crat_image = NULL;

	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
	 * all the current conditions. A check is put not to overwrite beyond
	 * allocated size
	 */
	switch (flags) {
	case COMPUTE_UNIT_CPU:
		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
		if (!pcrat_image)
			return -ENOMEM;
		*size = VCRAT_SIZE_FOR_CPU;
		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
		break;
	case COMPUTE_UNIT_GPU:
		if (!kdev)
			return -EINVAL;
		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
		if (!pcrat_image)
			return -ENOMEM;
		*size = VCRAT_SIZE_FOR_GPU;
		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
						 proximity_domain);
		break;
	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
		/* TODO: */
		ret = -EINVAL;
		pr_err("VCRAT not implemented for APU\n");
		break;
	default:
		ret = -EINVAL;
	}

	if (!ret)
		*crat_image = pcrat_image;
	else
		kfree(pcrat_image);

	return ret;
}


/* kfd_destroy_crat_image
 *
 *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
 *
 */
void kfd_destroy_crat_image(void *crat_image)
{
	kfree(crat_image);
}